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Why the awe for the Second Law ?

The Second Law of Thermodynamics

defines the ultimate purpose of life,

mind, and human striving: to deploy

energy and information to fight back

the tide of entropy and carve out

refuges of beneficial order.

Steven Pinker
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Tu m’as énormément soutenu durant cette thèse, et tes nombreux conseils ont toujours été
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reconnaissant. Par ailleurs, ce fut un réel plaisir de decouvrir ton Pays Basque natal, j’en

retiens un très bon souvenir.

De même, je souhaite remercier en particulier mon ami Gabriel Romon, pour la transmis-
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General notation

We will use the following notation throughout this document.

On some measurable probability space Ω, we will consider various random variables

X : Ω → X, Y : Ω → Y, etc. that are nothing but measurable functions. We will also

consider several probability measures on Ω, and typically two measures P and Q ∈M1
+(Ω),

where P describes the usually unknown data distribution and Q describes an estimation of

P. Then we will use the short notation PX for the push forward measure P◦X−1. Similarly

we will let QX = Q◦X−1. In the same way PX,Y ∈M1
+(X×Y) will be the joint distribution

of the couple (X, Y ) under P and PY |X the corresponding regular conditional probability

measure of Y knowing X when it exists. We will always work under sufficient hypotheses

to ensure that the decomposition

PX,Y = PXPY |X (1)

is valid, meaning that for any bounded measurable function f(X, Y )

∫
f dPX,Y =

∫ (∫
fdPY |X

)
dPX .

Moreover, we will use the short notation
∫
f dPX,Y = PX,Y (f),

so that the previous formula becomes

PX,Y (f) = PX
[
PY |X(f)

]
.

We will often use the Kullback Leibler divergence

K
(
Q,P

)
=




Q

(
log
(dQ

dP

))
when Q� P,

+∞ otherwise.

We will always be in this memoire in a situation where the decomposition

Lemma 1

K
(
QX,Y ,PX,Y

)
= K

(
QX ,PX

)
+QX

[
K
(
QY |X ,PY |X

)]

= K
(
QY ,PY

)
+QY

[
K
(
QX |Y ,PX |Y

)]
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is valid.

Proof. It follows from the decomposition (1). A precise statement and a rigorous proof

dealing with measurability issues can be found in [Cat04, Appendix section 1.7 page 50]. �
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CHAPTER 1

Introduction

Over the last decades, machine learning and statistical models have been used extensively

to treat large amounts of digital data of any type, such as images, speech, and texts ... One

of the main problems faced by data scientists is to predict the value of one specific variable

as a function of others, based on past history, consigned in a training set. The situation is

usually formalized in the following way: we consider a training set

Dn = {(X1, Y1), . . . , (Xn, Yn)} ∈
(
X× Y

)n

consisting in n pairs of independent and identically distributed random variables with un-

known joint distribution PX,Y . The goal of the machine learning algorithm is to compute

some function f(X) that can predict the outcome Y associated to X. This framework is

called supervised learning and can be divided into two categories depending on whether Y

is a quantitative or qualitative variable. In the first case, when Y ∈ Rd, we are dealing with

a regression problem and in the second case when Y belongs to a finite set, we are dealing

with a classification problem. The computation of the function f is usually performed using

an algorithm that minimizes an empirical risk criterion

inf
f∈F

1

n

n∑

i=1

L(f(Xi), Yi)

where F represents a certain class of functions and L(.) some loss function adapted to the

problem. For instance, in the classification setting, one can take L(Y, f(X)) = 1
(
Y 6= f(X)

)

and in the regression framework L(Y, f(X)) = ‖Y −f(X)‖2
2. The set of functions F depends

also on the setting, typically in the regression framework, one can consider the class of linear

predictors F = {fβ(X) = X>β, β ∈ Rd}, whereas in the classification case one can take

F = {fβ(X) = 1
(
Pβ
(
Y = 1 |X

)
≥ 1/2

)
, where Pβ

(
Y = 1 |X

)
= 1/(1 + e−X

>β)}, which

corresponds to the logistic model.

However, beforehand, data scientists have usually to extract features from the variables

(X1, . . . , Xn) on the occasion of an exploratory analysis. It consists in extracting the es-

sential information carried by the explanatory variables and in some cases in reducing the

dimension of the feature space, typically using principal component analysis. This data
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preprocessing step is necessary to learn afterwards a classification function f and obtain a

better classification performance.

This preprocessing step is comparable to the case when the available data set

(X1, . . . , Xn) ∼ P⊗nX

does not come with attached labels (Y1, . . . , Yn). The question is then simply to identify

patterns or characteristic structures. Typically, one would like to cluster the data into

meaningful groups, or to extract informative patterns. This task can be viewed as finding a

new representation of the data that highlights its content in a more usable way.

We are touching here on the daunting matter of unsupervised learning, where we do not

even know how to measure the quality of the result. Nonetheless, this is a key issue, as most

of the available data are unlabelled, and as asking human experts to provide labels in order

to train supervised learning algorithms is costly. This need is at the origin of this project,

where we propose new ideas with a focus on digital images. We have a double interest in

clustering and in changing the representation and will follow a simple guideline : use data

compression as a tool for data understanding.

To be more precise, we will describe a series of transformations of the representation of

an i.i.d. sample of digital images (X1, . . . , Xn) ∼ P⊗nX , where Xi ∈ Rd. We will start with a

lossy coding scheme based on labelling image regions, that can be seen as a multiple labels

extension of the k-means algorithm.

This procedure will learn a classification function

` : J1, nK× J1, dK 7→ J1, kK

defined by the family of product sets

`−1(j) = Aj ×Bj ⊂ J1, nK× J1, dK

and a set of image fragments Cj ∈ Rd, 1 ≤ j ≤ k where supp(Cj) ⊂ Bj. They define an

approximation Yi of each image Xi given by the formula

Yi =
k∑

j=1

1
(
i ∈ Aj

)
Cj, i ∈ J1, nK,

or equivalently by the formula

Yi,s = C`(i,s), s, i ∈ J1, nK, s ∈ J1, dK.

We will consider a coding distribution q(θ) on the parameter θ = (A,B,C), and a measure

D(θ) of the distortion of the representation of (X1, . . . , Xn) by θ, based on an entropy

criterion. We will learn a representation θ̂(X1, . . . , Xn) whose distortion is under a given level

and whose ideal code length − log2

(
q(θ̂)

)
is as small as possible. The procedure produces

image fragments Cj entering into the description of a set of sample images Aj as large as

12



possible. From this perspective, it can be viewed as a block indexing scheme reminiscent of

the Lempel Ziv algorithm. Another interesting feature of our algorithm is that it does not

use the image geometry. Although it has been tested on images, it could have been used

on any vectors of d measurements. It is indeed invariant by any permutation of the pixel

indices and could be without modification applied to other types of digital signals, like rgb

images, stereoscopic images, 3D images, video samples, speech signals etc. Moreover the

image fragmentation algorithm produces a discrete representation that can be augmented

with other discrete descriptors, like text annotations.

Once the fragmentation step is performed, the signal is described as a random set of labels

indexing image fragments. Borrowing ideas from linguistic theory, we then learn rewriting

rules to compress even more the representation. The algorithm searches repeatedly for the

most frequent pair of labels to be reindexed by a single new label. Decoding is then performed

by rewriting the new label into the original pair of labels. Again, this compression scheme

is reminiscent of the Lempel Ziv algorithm. While in the Lempel Ziv algorithm though, a

new indexed block is created by adding one bit to an old block, here a new block is made

from a pair of non overlapping old blocks. This type of procedure learns automatically a

set of rewriting rules, forming a context free grammar. Further compression steps are then

performed by factorizing and compressing again the grammar obtained at the previous step.

We obtain a grammar of the grammar that performs a kind of syntax analysis and defines

syntax labels. The process can then be repeated to obtain a hierarchy of syntax labels

forming a syntax tree (or rather a syntax forest in the general case).

Thus, instead of estimating a statistical model for the data, we learn a grammar through

a compression algorithm. The two approaches are different, although a link can be made,

considering that a lossless compression code defines a sub-probability measure, due to the

Kraft inequality. A good binary code is hard to compress further, so that its distribution is

close to a sequence of i.i.d. Bernoulli random variables with parameter 1/2. For this reason,

this compression approach can be seen as an alternative to the selection and estimation of

a statistical model based on conditional independence properties.

It avoids the difficulty of performing multiple tests of independence that was present in

[Mai14]. It allows to bypass the estimation of conditional probability distributions in high

dimension and overcomes the problem of model selection. To a certain extent, it is able to

circumvent the statistical issues due to the curse of dimensionality. From a practical point

of view, since it computes a simpler (compressed) representation of images, there is hope it

is scalable and can cope with large datasets (although we did not test this yet).

Nevertheless, we will establish a link with the estimation of the joint probability distri-

bution of random sets of labels. In particular, we will provide a sub-propability measure

estimator thanks to the Kraft inequality. Indeed, according to the Kraft inequality, for any

prefix binary code (ci)i≥1 ∑

i≥1

2−l(ci) ≤ 1,

13



where l(ci) is the length in bits of ci.

Then, we will provide an estimation of the law of one single random set using some kind

of Bayesian Shtarkov type estimator [Tri16]. We will provide also an oracle inequality to

measure the quality of this estimation.

Let us conclude this introduction with a presentation of k-means clustering, the algorithm

at the heart of vector quantization and lossy compression that will serve us as a starting

point.

The k-means algorithm was suggested by [Llo06] and it is sometimes referred to as Lloyd’s

algorithm. It provides a partition of a data set Dn = {X1, . . . , Xn | Xi ∈ Rp} ∼ P⊗nX , into

k distinct non-overlapping clusters by minimizing the k-means criterion or within-cluster

inertia criterion

inf
`:Rd→{1,...,k}

inf
(µ1,...,µk)∈Rd×k

1

n

n∑

1=1

d(Xi, µ`(i))
2, (1.1)

where ` : Rp → {1, . . . , k} denotes the labeling function or cluster assignment function,

whereas (µj)j∈J1,kK are the cluster centers (also called centroids) and d(., .) indicates some

distance or dissimilarity measure. It should be pointed out that criterion (1.1) is the empir-

ical counterpart of the theoretical k-means objective function

inf
`:Rd→{1,...,k}

inf
(µ1,...,µk)∈Rd×k

PX
[
d(X,µ`(X))

2
]
,

where PX [.] denotes the expectation with respect to X. Minimizing the previous criterion

(1.1) requires to explore all partitions of {1, . . . , n} into k groups. However this task rep-

resents a combinatorial optimization problem which is known to be NP-hard and hence

infeasible at a practical level.

As an alternative, the k-means algorithm tries to decrease the value of the objective

function in an iterative fashion by allocating each data point to the cluster with the near-

est centroid and recomputing the center from this partition, see a complete description in

algorithm 1 described below. In this way, the k-means algorithm decreases the value of the

criterion at each step but converges generally to a local minimum.

Besides, the results obtained depend on the initialization of the k-means algorithm, that

is for this reason often randomized. One way to avoid bad clustering due to bad initialization,

is to repeat the operation several times and select the one for which the within-cluster inertia

criterion is the smallest.

By far, the Euclidean distance d(x, y) = ‖x − y‖2 is the most common choice, which

leads to compute centroids as empirical means inside each cluster. However, the Euclidean

distance can give rise to bad clustering since the empirical mean is not robust. One way

to overcome this point is to employ robust estimators for the mean of a random vector.

For instance, one may use the estimator suggested in [CG18], since the resulting estimator

satisfies tight concentration bounds and is straightforward to compute . An other way to
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tackle this issue is to consider other distances more robust to noise and outliers, for instance

the L1 norm.

Algorithm 1 k-means
Initialization :

Pick at random k individuals in the data set that represent the initial centroids of the k

clusters.

Iterate the following steps until the within-cluster inertia criterion converges :

• Put each individual in the cluster indexed by the closest centroid, that is for all 1 ≤
i ≤ n

`?(i) = arg min
j∈J1,kK

d(xi, µj)
2.

• Compute the centers of gravity of each cluster, that is for all 1 ≤ j ≤ k

µ?j = arg min
µj

∑

i∈`−1(j)

d(xi, µj)
2.

These centers of gravity become the new centroids.

return ((`−1(j))j∈J1,kK, (µj)j∈J1,kK)

In what follows we will introduce a fragmentation algorithm that uses a generalization

of the k-means criterion. However, we will propose an algorithm that is very different from

Lloyd’s algorithm. We will indeed keep the criterion under a given level while optimizing

what stands for the number k of centroids. Doing this, we will avoid the difficult question

of the choice of k. We will take this opportunity to prove new dimension free generalization

bounds for the k-means criterion and for the fragmentation criterion. These non asymptotic

bounds decrease like
(
k log(k)/n

)1/4
or like log(n/k)

√
k log(k)/n and improve on previously

known ones. They are based on PAC-Bayesian lemmas and some new kind of PAC-Bayesian

chaining. Bounds for fragmentation show what quantity takes the place of the number

k of centroids in this generalized framework: it is the sum of the sizes of the fragments

(normalized by the image size, so that we get back k when we consider in the original

k-means setting each centroid as a big fragment covering the whole pixel grid).
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CHAPTER 2

Overview

2.1. General ideas

In this study, we will make new proposals for the unsupervised classification of signals,

taking the example of digital images.

The aim of unsupervised classification, as we conceive it, is to propose various classifica-

tion functions, with the hope that at least some of them may be useful to solve interesting

tasks.

We will take as a starting point the k-means algorithm with Euclidean distance. Given

(X1, . . . , Xn) ∈ Rd×n a training sample, and k centers ci, 1 ≤ i ≤ k, the empirical loss of the

k-means algorithm is

L(c1, . . . , ck) =
1

n

n∑

i=1

min
j∈J1,kK

‖Xi − cj‖2 = inf
`:Rd→J1,kK

PX
(
‖X − c`(X)‖2

)
,

where P =
1

n

n∑

i=1

δXi is the empirical measure. This empirical loss is related to the expected

loss

inf
`:Rd→J1,kK

PX
(
‖X − c`(X)‖2

)
.

The first thing we will do, starting from there, is to see what we get if we consider the square

of the Euclidean norm as a Gaussian Kullback divergence. To make this interpretation, we

add to X ∈ Rd a second random variable Y such that PY |X = N
(
X, σ2Id

)
, where Id is the

identity matrix of size d× d. We get that

‖X − c`(X)‖2 = 2σ2K
(
QY |X ,PY |X

)
,

where QY |X = N
(
c`(X), σ

2Id
)

= QY | `(X). It is interesting to consider K
(
QY |X ,PY |X

)

rather than K
(
PY |X , QY |X

)
that are equal in this case, because of the following property.
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Proposition 2 The Euclidean k-means criterion can be viewed as an information k-means

criterion due to the identity

inf
c1,...,ck

PX
(
‖X − c`(X)‖2

)
= 2σ2 inf

Q
PX
[
K
(
QY | `(X),PY |X

)]
.

The important thing here is that we do not have to restrict the infimum to
{
Q : QY |X = N

(
c`(X), σ

2Id
)}
.

Proof. This is a consequence of Proposition 11 on page 45. �

This proposition shows that the k-means quadratic criterion is a special case of an infor-

mation k-means criterion

inf
`:Rd→J1,kK

inf
Q
P
[
K
(
QY | `(X),PY |X

)]
,

and of its empirical counterpart

inf
`:Rd→J1,kK

inf
Q
P
[
K
(
QY | `(X),PY |X

)]
.

This information k-means criterion broadens the scope of the k-means algorithm from clas-

sifying vectors to classifying distributions. In this case, the data set X1, . . . , Xn ∼ P⊗nX is

replaced with a set of conditional probability measures pX1 , . . . , pXn . For instance in text-

mining, histograms made of word counts, called bags of words are often used to represent

documents. Similarly in computer vision, images may be represented by histograms of vi-

sual features. It is worth noticing that bag of visual features are often the result of some

clustering algorithm, that may be the k-means algorithm, run on a specific set of image

patches to produce a dictionary of features. For more details, one can refer to [Tsa12].

In the information k-means setting, we try to approximate PY |X by QY | `(X). This is an

invitation to consider as a variant of the same idea the approximation of the joint distribution

PX,Y by QX,Y such that QY |X = QY | `(X).

From the disintegration theorem notice that

K
(
QX,Y ,PX,Y

)
= K

(
QX ,PX

)
+QX

[
K
(
QY |X ,PY |X

)]
.

Thus, considering the specific model

Q =
{
QX,Y : QX = PX , QY |X = QY |`(X), `(X) ∈ {1, . . . , k}

}
,

the information k-means can be expressed as an information projection

inf
QX,Y ∈Q

K
(
QX,Y ,PX,Y

)
= inf

`:X 7→J1,kK
inf

QY |`(X)∈M1
+(Y)

PX

[
K
(
QY |`(X),PY |X

)]
.

The information projection, also called I-projection [Csi75], consists in projecting a proba-

bility measure P onto a set Q of probability distributions, solving

inf
Q∈Q

K
(
Q,P

)
.
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This concept appears also in Sanov’s theorem [Csi84] which provides a bound on the proba-

bility of the empirical measure Pn to belong to a set of probability distributions Q, informally

− log
(
P⊗

n

X

(
Pn ∈ Q

))
∼ n inf

Q∈Q
K
(
Q,PX

)
.

The difference between maximum likelihood estimation, that can be written as

θ̂MLE ∈ arg min
θ∈Θ

K(Pn, Qθ), (2.1)

at least when the state space is finite, and I-projection is due to the fact that the Kullback

Leibler divergence is not symmetric. In particular it is finite only if its first argument

is absolutely continuous with respect to its second argument. In other words, maximum

likelihood estimation tends to over-estimate the support of the data distribution, whereas

I-projection under-estimate it. The difference in terms the support’s estimation is very well

illustrated in the Gaussian case in [Bis06], figure 10.2 and 10.3, chap 10. Besides, one can

see that (2.1) is equivalent to the maximization of the expectation of a loss function

θ̂MLE ∈ arg max
θ∈Θ

Pn

(
log
(dQθ

dν

))
,

where ν is some dominating measure (Qθ � ν, for each θ ∈ Θ), whereas its theoretical

conterpart is written as

θ∗MLE ∈ arg max
θ∈Θ

P

(
log
(dQθ

dν

))
.

In the same manner, we will propose a loss function for the estimation of the classifica-

tion parameter ` : X 7→ J1, kK equivalent to the minimization of the information k-means

criterion. Indeed, from Lemma 1 on page 9 and Lemma 6 on page 41, one can remark that

inf
QX,Y :QY |X=µ`(X)

K
(
QX,Y ,PX,Y

)
= − log

{
PX

[
exp
(
−K

(
µ`(X),PY |X

))]}
, µ ∈M1

+(Y)k.

It shows that the minimization of the information k-means criterion is related to the mini-

mization of the expectation of a loss function γµ,`(X)

(
µ∗, `∗

)
∈ arg min

µ∈M1
+(Y)k, `:X7→J1,kK

PX
(
γµ,`(X)

)
, (2.2)

where γµ,`(X) = 1 − exp
(
−K

(
µ`(X),PY |X

))
. This loss function is completely observed

(we assume that PY |X is known) and plays the role of log
(

dQθ
dν

)
in the maximum likelihood

framework. Note that the loss function γµ,`(X) belongs to the unit interval, since the

Kullback divergence is non negative. We will study the excess risk

PX
(
γµ̂, ̂̀(X)

)
− PX

(
γµ∗, `∗(X)

)
,

where (
µ̂, ̂̀

)
∈ arg min

µ∈M1
+(Y)k,`:X7→J1,kK

PX
(
γµ,`(X)

)
.
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Furthermore, information projection appears in many machine learning algorithms, like for

instance in variational Bayes methods (VB) for Bayesian estimation. Indeed, VB methods

try to approximate a posterior distribution by I-projection onto a family of tractable distri-

butions. These methods represent an alternative to slower MCMC approximations of the

posterior distribution. We refer the reader to [Bis06], [BKM17], [AR20] and [ARC16] for

more details on this topic. It turns out that VB methods appear also as an appealing tool for

unsupervised clustering, especially to compute variational autoencoder (VAE), see [Doe16]

for a complete review of the subject. It also emerged in graph variational autoencoders to

perform clustering of nodes in a graph, see [Sal+19b] and [Sal+19a].

We should mention that clustering (conditional) probability distributions based on the

Kullback divergence or other information criteria is not a new subject. It has been exten-

sively used in text categorization, especially in word clustering to extract features or reduce

the original space dimension. For instance, [PTL02] introduce what they call distributional

clustering which consists in clustering nouns with respect to the conditional distribution of

the associated verb given the noun. The grouping is performed by measuring the Kullback

divergence between the conditional distribution knowing each noun and its associated cen-

troid distribution. The centroid distribution is set to an intra-cluster average of conditional

distributions that minimizes the average of the Kullback divergence.

However, in the information k-means framework, we follow a different route. We perform

the grouping step by minimizing the Kullback divergence with respect to its first argument,

which leads to very different centroids, computed as geometric means of conditional distri-

butions. This is to the best of our knowledge a new addition to the literature.

The clustering of conditional distributions in [PTL02] is a particular version of a more

general problem called information bottleneck, see [TPB01]. In the sequel, we will see that

information k-means is a particular version of a more general clustering problem called

information fragmentation.

Besides, in [Dhi+03], the authors propose a type of k-means algorithm that decreases a

loss function based on the Jensen-Shannon entropy, written also as a loss of mutual informa-

tion, leading to centers equal to weighted means of conditional distributions. In particular,

they show that their entropy criterion can be expressed as a k-means type criterion using the

Kullback divergence as the distortion. More formally, their criterion reduces to the following

objective problem

inf
`:Q→J1,kK

inf
q1,...,qk

k∑

j=1

∑

i∈`−1(j)

πiK(pi, qj),

where Q is a set of discrete probability distributions and πi > 0 represents some weights

associated with distribution pi. We can notice here that centroids are computed by minimiz-

ing the Kullback divergence with respect to the second argument, so that they are leading

to compute centroids as

q∗j =
∑

i∈`−1(j)

πi pi∑
i∈`−1(j) πi

,
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with ` fixed and compute the best classification function as

`∗(i) = arg min
j∈J1,kK

K(pi, q
∗
j ).

In the same way, [Cao+13] and [Wu12] go further in this direction, studying what they

call Info K-means. In particular, [Cao+13] proposes a new algorithm to deal with the

practical issues of Info-Kmeans, that arise from computing the Kullback divergence in high

dimension. They apply this algorithm to cluster a sample of digital images presenting

11 different landmarks. They first preprocess images by extracting visual features and

by quantizing those features, in order to consider each image as a bag of visual features.

Then, they cluster images using Info-Kmeans with K = 11 and obtain promising results

by recovering a large portion of the original partition given by the types of landmarks. We

should point out that when we will conduct our experiments, we will not use any kind of

preprocessing step such as feature selection with quantization. We will perform directly the

information fragmentation algorithm on the original digital images and this represents a

strong point of our approach. Besides, we refer also to [Jia+11], who propose a k-medoid

algorithm to decrease a k-means loss based on the Kullback divergence in both the discrete

and continuous cases, and provide in addition an estimator of the Kullback divergence in a

continuous setting.

Following the ideas of [Dhi+03], [BDG04] presents a general k-means framework based

on the Bregman divergence. The authors show that such criteria can be minimized itera-

tively. The Bregman distance encompasses many traditional similarity measures such as the

Euclidean distance, the Kullback divergence, the logistic loss and many others. However, in

the Kullback case, the minimization is performed with respect to the second argument, and

not the first as in our proposal.

Coming back to information k-means, we have seen that if we choose freely the distribu-

tion QX instead of setting it to PX , we get the bounded loss function of equation (2.2) on

page 19. In the quadratic case, we get the criterion

inf
`
PX

[
1− exp

(
− 1

2σ2
‖X − c`(X)‖2

)]
= PX

[
1− exp

(
− 1

2σ2
min
j∈J1,kK

‖X − cj‖2
)]
.

We will see that we can state a generalization bound for this kind of robust criterion under

weaker hypotheses than for the original criterion.

So far, we have described the extension of k-means to information k-means. The next

extension we would like to discuss is from k-means to fragmentation. In the k-means setting,

we use a center in Rd to represent nearby points. This is rather crude from a classification

point of view. We do not really expect whole images (or more generally whole signals) to

correspond to a relevant class. We would rather like to label parts of images. This may be

done by labeling pixels in images with different labels, producing a fragmentation of each

image into various areas. In the usual quadratic k-means setting, we propose to approximate

X by

Y =
∑

j∈AX

cj, where J1, dK =
⊔

j∈AX

supp
(
cj
)
.
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Here AX replaces `(X) and contains the labels of the components of the signal X ∈ Rd.

This framework can be seen as a generalization of the k-means setting that corresponds to

AX =
{
`(X)

}
. The quadratic criterion becomes

PX

(∥∥X −
∑

j∈AX

cj
∥∥2
)
.

Introducing πj, the orthogonal projection on the vector space spanned by the support of cj,

it can also be written as

PX

(∑

j∈AX

∥∥πj(X)− cj
∥∥2
)

=
k∑

j=1

PX

(
1
(
X ∈ Aj

)∥∥πj(X)− cj
∥∥2
)
,

where Aj = {x ∈ Rd : j ∈ Ax}.

To give an information projection description of fragmentation, we have to introduce the

pixel location S as a random variable. More precisely, we replace the representation Y of X

with two random variables S ∈ J1, dK and V ∈ R, defined by

PS |X =
1

d

d∑

j=1

δj and PV |X,S=j = N
(
Xj, σ

2
)
.

This being put, we can describe the quadratic k-means criterion as

inf
Q
PX,S

[
K
(
QV |S, `(X),PV |S,X

)]
,

while the global entropy criterion is

inf
Q:QS, V |X=PSQV |S,`(X)

K
(
QX,S, V ,PX,S, V

)

= − log sup
Q:QS,V |X=PSQV |S, `(X)

{
PX

[
exp
(
−K

(
QS, V |`(X),PS, V |X

)]}
.

The modification to be made to obtain the quadratic fragmentation criterion is just to make

the classification function ` depend on S, the pixel location. We get

inf
Q
PX,S

[
K
(
QV |S, `(X,S),PV |X,S

)]
.

The corresponding global entropy criterion is

inf
Q :QS, V |X, `(X,S)=QS, V | `(X,S)

K
(
QX,S, V ,PX,S, V

)
.

It has the following interesting properties.

Proposition 3 (Global fragmentation criterion) Consider k centers ρj ∈M1
+

(
Rd
)
,

1 ≤ j ≤ k. Define

T2 =
{
B ⊂ J1, kK : ρi ⊥ ρj, i 6= j ∈ B

}
,
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the set of (possibly partial) tilings by mutually singular probability measures ρj. The partial

minimum

inf
Q

K
(
QX,S, V ,PX,S, V

)

taken on all probability measures Q, such that for some measurable function ` : Rd×J1, dK→
J1, kK

Q
[
QX |S, V, `(X,S) = ρ`(X,S)

]
= 1. (2.3)

is equal to

− sup
`

logPS

(
k∑

j=1

1
[
ρj
(
`−1
S (j)

)
= 1
]

exp
[
−K

(
ρj,PX |S

)
−Varρj

(
XS

)
/(2σ2)

])

= − logPS

(
sup
B∈T2

∑

j∈B

exp
[
−K

(
ρj,PX |S

)
−Varρj

(
XS

)
/(2σ2)

])
,

where

`s : Rd → J1, kK

x 7→ `(x, s).

For any choice of `, and in particular for the optimal one, putting W = `(X,S), the optimum

in QW,S, V is reached when

dQW,S, V

dPW,S ⊗ λV
= Z−1 exp

[
−K

(
ρW ,PX |W,S

)
−VarρW

(
XS

)
/(2σ2)

]
gσ, ρW (XS)(V ), (2.4)

where λV is the Lebesgue measure on R and

gσ,m(v) =
1

σ
√

2π
exp

(
− (v −m)2

2σ2

)
.

In particular, for the optimal choice of QW,S, V , QV |S,W = N
(
ρW (XS), σ2

)
is a Gaussian

probability measure and

dQS |W

dPS |W
= Z−1

W exp
[
−K

(
ρW ,PX |W,S

)
−VarρW (XS)/(2σ2)

]
.

On the other hand, consider k centers µ
(j)
S, V ∈M1

+

(
J1, dK×R

)
, 1 ≤ j ≤ k such that

µ
(j)
V |S = N

(
µ

(j)
V |S(V ), σ2

)
, 1 ≤ j ≤ k.

Define

T1 =
{
A ⊂ J1, kK : µ

(i)
S ⊥ µ

(j)
S , i 6= j ∈ A

}
,

the set of tilings by mutually singular probability measures µ
(j)
S (or equivalently by mutually

singular probability measures µ
(j)
S, V ).
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The partial minimum

inf
Q

K
(
QX,S, V ,PX,S, V

)

taken on all probability measures Q ∈ M1
+

(
Ω
)

such that, for some measurable function

` : Rd × J1, dK→ J1, kK
Q
[
QS, V |X, `(X,S) = µ

(`(X,S))
S, V

]
= 1, (2.5)

is equal to

− sup
`

logPX

(
k∑

j=1

1
[
µ

(j)
S

(
`−1
X (j)

)
= 1
]

× exp
{
−K

(
µ

(j)
S ,PS |X

)
− µ(j)

S

[(
µ

(j)
V |S(V )−XS

)2

/(2σ2)
]})

= − logPX

(
sup
A∈T1

∑

j∈A

exp
{
−K

(
µ

(j)
S ,PS |X

)
− µ(j)

S

[(
µ

(j)
V |S(V )−XS

)2

/(2σ2)
]})

,

where

`x : J1, dK→ J1, kK

s 7→ `(x, s).

For any value of `, and in particular for the optimal one, considering W = `(X, S), the

minimum in QX,W is reached when

dQX,W

dPX,W
= Z−1 exp

{
−K

(
µ

(W )
S ,PS |X,W

)
− µ(W )

S

[(
µ

(W )
V |S(V )−XS

)2

/(2σ2)
]}
. (2.6)

Alternating these two partial optimization steps, we can converge to a local minimum for the

optimization problem

inf
Q

K
(
QX,S, V ,PX,S, V

)
,

where the infimum is taken over probability measures Q ∈ M1
+

(
Ω
)

satisfying, for some

measurable classification function ` : Rd × J1, dK→ J1, kK,

Q
[
QX,S, V | `(X,S) = QX | `(X,S) ⊗QS, V | `(X,S)

]
= 1. (2.7)

The proof will be given later, see Proposition 16 on page 56. The second part of the

proposition shows that the entropy criterion can be viewed as an expectation with respect

to PX . This expectation can be estimated by an expectation with respect to the empirical

measure PX . The last part of the proposition describes the pendent of Lloyd’s algorithm

(in the case where we replace the unknown PX by the empirical measure PX).

Now that we have a criterion for fragmentation, we need an algorithm to compute a

fragmentation based on this criterion.

We will use the criterion

inf
Q

K
(
QX,S, V ,PX,S, V

)
,
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to define a distortion function. Let X1, . . . , Xn be an i.i.d. training set. We can represent

its content by the distribution

PI, S, V =

(
1

n

n∑

i=1

δi

)
PS, V |X=XI

=

(
1

n

n∑

i=1

δi

)(
1

d

d∑

j=1

δj

)
N
(
XI,S, σ

2
)

=
1

nd

n∑

i=1

d∑

j=1

δi,j N
(
Xi,j, σ

2
)
.

Here I is a random index ranging in J1, nK. We see immediately that (X1, . . . , Xn) is a

function of P, since

Xi,s = PV |S=s, I=i(V ), i ∈ J1, nK, s ∈ J1, dK.

Consider a finite codebook C ⊂ R, for instance C =
{
m2−8 : m ∈ J0, 255K

}
if we are to

code light intensities ranging in the unit interval [0, 1] on eight bits as is usually the case.

For any classification function

` : J1, nK× J1, dK −→ J1, kK

defined by

`−1(j) = Aj ×Bj, 1 ≤ j ≤ k,

where (Aj × Bj, 1 ≤ j ≤ k) is a partition of J1, nK × J1, dK and any family of centers

(Cj, 1 ≤ j ≤ k) ∈ Cd×k, where supp(Cj) ⊂ Bj, define a parameter

θ = (Aj, Bj, Cj)
k
j=1

and the corresponding model

Qθ =
{
QI, S, V ∈M1

+

(
J1, nK× J1, dK×R

)

: QS, V | I, (I,S)∈Aj×Bj = PS |S∈BjN
(
Cj, S, σ

2
)
, j ∈ J1, kK

}
,

where we recall that PS = 1
d

∑d
s=1 δs is known and is the uniform measure on the pixel

locations. To make a connection between Qθ and the model (2.5) on page 24 defined in

Proposition 3 on page 22, one can see that Qθ is equivalent to impose

µ
(j)
S = PS |S∈Bj and µ

(j)
V |S = N

(
Cj, S, σ

2
)
.

In other words, Qθ ⊂ Q`, where

Q` =
{
QI, S, V ∈M1

+

(
J1, nK× J1, dK×R

)
: QI, S, V | `(I,S) = QI | `(I,S) ⊗QS, V | `(I,S)

}
.

We define the distortion D(θ) of the representation of the sample (X1, . . . , Xn) by the

parameter θ as
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D(θ) = inf
Q∈Qθ

{
K
(
QI, S, V ,PI, S, V

)}

= − logPI

(
k∑

j=1

1(I ∈ Aj)PS(Bj) exp
{
− 1

2σ2
PS |S∈Bj

[(
XI, S − YI, S

)2
)]})

,

according to Proposition 3 on page 22.

Note that it makes sense to optimize in Q ∈ Qθ, since the quantization of Xi, given by

Yi,s = QV |S=s,I=i(V ) =
k∑

j=1

1(i ∈ Aj)Cj,s, 1 ≤ i ≤ n, 1 ≤ s ≤ d,

does not depend on Q ∈ Qθ, but only on θ. In fact, it does not depend on QI,S so that, as

a variant, we could have optimized even more in the definition of D(θ).

Note that this notion of distortion satisfies

inf
Q∈Q`

K
(
QI, S, V ,PI, S, V

)
≤ D(θ) ≤ PI, S

[(
XI, S − YI, S

)2
]

=
1

nd
‖Xn

1 − Y n
1 ‖2.

Given a coding distribution q(θ) and an acceptable distortion level η ≥ 0, the fragmenta-

tion algorithm will compute a lossy representation θ̂(X1, . . . , Xn) with distortion D(θ̂) ≤ η

and with an ideal code length − log
(
q(θ̂)

)
as small as possible.

We will use a coding distribution of the form

q(θ) = q(A,B,C) = q(A) q(B,C).

After this fragmentation step leading to the computation of θ̂, we will perform a syntax

analysis step where we will replace the ideal code q(A) by a more efficient code q̃(A). This

improvement will be obtained using the Bayesian Shtarkov approach. More precisely we will

consider a family qα(A) of coding distributions depending on a new parameter α and a prior

coding distribution µ(α), and we will improve on q(A) by considering

q̃(A) = max
α

µ(α)qα(A).

Since

q(A) =
∑

α

µ(α)qα(A)

is a probability measure, q̃ is a subprobability measure and thus a valid coding distribution.

From a Bayesian point of view, q̃(A) can also be seen as the maximum a posteriori probability

estimate (MAP). Introducing

α̂ ∈ arg max
α

µ(α)qα(Â),

we see that q̃(Â) = µ(α̂)qα̂(Â) and that α̂ is a function of the sample (X1, . . . , Xn), since

this is the case for Â. When we will detail the construction of α̂ we will see that it performs

some kind of syntax analysis and in particular leads to the computation of a syntax tree for

each image Xi, 1 ≤ i ≤ n of the sample.
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2.2. Generalization bounds for fragmentation

The fragmentation algorithm computes a classification function

`k : J1, nK× J1, dK −→ J1, kK.

We can deduce from it

`k : {X1, . . . , Xn} × J1, dK −→ J1, kK

(Xi, s) 7−→ `(Xi, s) = `k(i, s).

A natural question is to extend `(x, s) to x 6∈ {X1, . . . , Xn} in some meaningful way. To this

purpose, introduce the set of fragments used to represent Xi

Ai =
{
j ∈ J1, kK : i ∈ Aj

}
.

Remarking that K
(
µ

(j)
S ,PS |X

)
= − log

(
PS(Bj)

)
and noticing that µ

(j)
V |S(V ) = Cj,S, one gets

from Proposition 3 on page 22

D(A,B,C) = − logPI

(∑

j∈AI

PS(Bj) exp
[
− 1

2σ2
PS |S∈Bj

[(
Cj,S −XI,S

)2]]
)

≥ − logPX

(
exp
[
−D(X,B,C)

])
,

where (A,B,C) = ((Aj)
k
j=1, (Bj)

k
j=1, (Cj)

k
j=1) for short and where

D(X,B,C) = − log max
A∈T

(∑

j∈A

PS(Bj) exp
{
− 1

2σ2
PS |S∈Bj

[(
XS − Cj, S

)2
]})

and

T =
{
A ⊂ J1, kK : Bi ∩Bj = ∅, i 6= j ∈ A

}
.

We can see D(X,B,C) as the optimal distortion for a single image when it is represented

by its best approximation in the codebook (B,C) of image fragments. An optimal set of

fragments AX for X is given by the formula

AX ∈ arg max
A∈T

(∑

j∈A

PS(Bj) exp
{
− 1

2σ2
PS |S∈Bj

[(
XS − Cj, S

)2
]})

. (2.8)

It is well defined even when X 6∈ {X1, . . . , Xn}.

We can then define the optimal empirical distortion of the codebook (B,C) as

D(B,C) = − logPX

(
exp
[
−D(X,B,C)

])
≤ D(A,B,C)

and ask for its relationship with its expected counterpart

D(B,C) = − logPX

(
exp
[
−D(X,B,C)

])
.
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For this we need deviation inequalities for

PX

(
exp
[
−D(X,B,C)

])

that are uniform with respect to the parameter (B,C) (here the parameter is the fragments

codebook).

Note that the optimal expected distortion D(B,C) is related to the estimation of the

distribution PX,S, V . Indeed, consider the model

QB,C =
{
QX,S, V ∈M1

+

(
Rd × J1, dK×R

)
:

QS, V |X =
∑

j∈AX

QS |X(Bj)PS |S∈BjN
(
Cj, S, σ

2
)}

=
{
QX,S, V ∈M1

+

(
Rd × J1, dK×R

)
:

QS, V |X, `(X,S)=j = PS |S∈BjN
(
Cj, S, σ

2
)}
,

where AX , the optimal set of fragments, is defined by equation (2.8) on page 27 and where,

putting Aj = {x ∈ Rd : j ∈ Ax}, ` is defined by the formula

`
−1

(j) = Aj ×Bj, 1 ≤ j ≤ k.

Remark that

D(B,C) = inf
Q∈QB,C

K
(
QX,S, V ,PX,S, V

)
.

Bounding D(B,C) in terms of D(B,C) thus appears as a generalization bound for some

information k-means algorithm.

We will also derive similar bounds for the more classical k-means algorithms described

above.

Our proofs will be based on PAC-Bayesian lemmas. We will first rewrite the risk (of

information k-means or fragmention) using a mapping to a reproducing kernel Hilbert space.

This will allow to see the risk as the expectation of the minimum of linear functions of

the parameter, in a separable Hilbert space of possibly infinite dimension. We will then

establish dimension free PAC-Bayesian bounds suitable to this situation. Borrowing ideas

from the construction of the isonormal Gaussian process [MPS07, section 3.5], we will use

the distribution of an infinite sequence of shifted Gaussian random variables both for the

prior and the posterior parameter distribution. We will also use arguments from the proofs

of [CG18] and [CG17], concerning the estimation of the mean of a random vector. We

will prove generalization bounds going to zero as k log(k)/n goes to zero, which is better

than other bounds already published. Concerning the speed of decrease of the bounds, we

first prove bounds in
(
k log(k)/n

)1/4
and then, introducing a more sophisticated chaining

argument, bounds in log(n/k)
√
k log(k)/n. We will work with weak hypotheses and will

in particular not consider the kind of margin assumptions that are nessary to get bounds
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decreasing faster than
√

1/n for a given value of k. See [BDL08], [Fis10], [Lev13],[Lev15]

and [BFL20].

To get a
√

1/n speed as in [BDL08], we take inspiration from the classical chaining

procedure for bounding the expected suprema of sub-Gaussian processes (see section 13.1

in [BLM13]). We create a PAC-Bayesian version of chaining in which the concept of δ-net

and δ-covering is replaced by the use of a sequence of Gaussian perturbations parametrized

by a variance ranging on a logarithmic grid. We combine this PAC-Bayesian chaining with

the use of the influence function ψ described in [Cat12] to decompose the excess risk into a

sub-Gaussian part and an other part representing extreme values. Doing so, we will recover

the speed 1/
√
n proved in [BDL08], but with a better dependence in k, since we get a non

asymptotic bound of order log(n/k)
√
k log(k)/n instead of k/

√
n.

2.3. Description of the signal fragmentation algorithm

To start with, we will devote to each image Xi ∈ Rd of an i.i.d. training set Xi, 1 ≤ i ≤ n

a single fragment equal to the whole Xi.

This means that we will start with k = n and a classification function `n defined by

`−1
n (j) = An,j ×Bn,j = {j} × J1, dK.

From there, we will iteratively define `k for larger values of k setting for some pair Jk ⊂ J1, kK
of labels

Ak+1,k+1 =
⊔

j∈Jk

Ak,j, Ak+1,j = Ak,j, j ∈ J1, kK,

Bk+1,k+1 ⊂
⋂

j∈Jk

Bk,j, Bk+1,j =




Bk,j \Bk+1,k+1, j ∈ Jk,

Bk,j, j ∈ J1, kK \ Jk.

These equations define `k+1 from `k. We will explain later on how to choose Jk and Bk+1,k+1.

In all cases, however, we can readily remark that for any k ≥ n,

{
Ak,j ×Bk,j : 1 ≤ j ≤ k, Bk,j 6= ∅

}

is a partition of J1, nK× J1, dK. Note that this partition may contain less than k components

(and even less than n components) due to the fact that Bk,j is decreasing with k ≥ j for a

fixed value of j and may become empty. Consider

Q
(k)
I, S, V = PI, S N

(
Ck, `k(I,S), S, σ

2
)
.

where

Ck, j, s = arg min
{∣∣c− PI | I∈Ak, j(XI,s)

∣∣ : c ∈ C
}
, s ∈ Bj,

and choose
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Bk+1,k+1 =
{
s ∈

⋂

j∈Jk

Bk,j : Var
(
XI,s |PI | I∈Ak+1,k+1

)

+ min
c∈C

(
PI | I∈Ak+1, k+1

(XI,s)− c
)2

≤ α
}
. (2.9)

Doing so, we are sure at each step that

D(Ak, Bk, Ck) ≤K
(
Q

(k)
I, S, V ,PI, S, V

)
≤ α

2σ2
.

Indeed, from the decomposition of the Kullback divergence (see Lemma 1 on page 9) and

the law of iterated expectations, we see that

K
(
Q

(k)
I, S, V ,PI, S, V

)
=

1

2σ2
PI, S

[(
Ck,`k(I,S),S −XS

)2]

=
1

2σ2

k∑

j=1

PI,S(Ak, j ×Bk, j)PS |S∈Bk, j

{
PI | I∈Ak, j

[(
Ck, j, S −XI,S

)2]}

=
1

2σ2

k∑

j=1

PI, S
(
Ak, j×Bk, j

)
PS |S∈Bk, j

[
Var

(
XI,S |PI | I∈Ak, j

)
+
(
PI | I∈Ak, j(XI,S)−Ck, j, S

)2
]
.

We have now to discuss the choice of Jk = {ik, jk}. Assume that max{n, d, |C|} < 2L, so

that all coordinates in (Ak, Bk, Ck) can be coded with L bits. In this case (which is an

obvious case of the Kraft inequality),

q
(
Ak, Bk, Ck

)
= 2−L(|Ak|+2|Bk|+3k),

where |Ak| =
∑k

j=1|Ak, j|, and |Bk| =
∑k

j=1|Bk, j|, is a sub-probability measure (the factor

3k comes from the use of a separator, for instance the index 0 that is not used otherwise,

at the end of the enumerations of the sets Ak,j, Bk,j and Ck,j). Remark now that the code

length decrease is

log2

(
q(Ak+1, Bk+1, Ck+1)

)
− log2

(
q(Ak, Bk, Ck)

)
= 2L|Bk+1,k+1| − L|Ak+1,k+1| − 3L.

Maximizing the code length decrease would lead to choose

Jk = {jk, 1, jk, 2} ∈ arg max
Jk

(
2|Bk+1, k+1| − |Ak+1, k+1|

)
.

This requires to compute Ak+1, k+1 and Bk+1, k+1 for all possible choices of the pair Jk. We

have tested a faster approximation to this minimization, consisting in choosing

jk, 1 ∈ arg max
j∈J1,kK

(
2|Bk,j| − |Ak,j|

)

and then

jk, 2 ∈ arg max
jk,2∈J1,kK\{jk,1}

(
2|Bk+1, k+1| − |Ak+1, k+1|

)
.

This requires to compute Ak+1, k+1 and Bk+1, k+1 only for k− 1 possible values of Jk, namely

for

Jk ∈
{
{jk, 1, j} : j ∈ J1, kK \ {jk, 1}

}
,
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instead of k(k− 1)/2 possible values if we opt for a full optimization. This heuristic simpli-

fication is based on the fact that

2|Bk+1, k+1| − |Ak+1, k+1| ≤ 2|Bk, jk, 1| − |Ak, jk, 1 |,

so that the left-hand side cannot be big if the right-hand side is already small, justifying the

idea of maximizing the right-hand side to choose jk,1 and then the left-hand side to choose

jk,2.

A natural stopping rule in this framework is to continue as long as we can decrease the

code length, that is as long as

2|Bk+1, k+1| − |Ak+1, k+1| > 3.

2.4. Syntax analysis

Now that we have a mean to represent an i.i.d. sample of images (X1, . . . , Xn) by sets of

fragments (A1, . . . An), drawn from a fragment codebook (B,C), we will carry further the

change of representation by defining a fragment grammar.

Our approach will still be based on compression theory as we have mentioned in the

introduction.

The algorithm we will now describe consists in a sequence of lossless codes for the sample

(A1, . . . , An) made of n random sets of labels ranging in J1, kK. As in the previous section,

our guide will be to decrease the code length at each step. This can be coded to start with

by listing the content of each set, with separators, resulting in the sequence

w1,1 . . . w1,r1 ∧ w2,1 . . . w2,r2 ∧ · · · ∧ wn,1 . . . wn,rn∧,

where ∧ is a supplementary label used as a separator and where the labels wi,j ∈ J1, kK and

∧ are coded with a prefix binary code (so that they can for instance either be coded with

a fixed length code or with a prefix binary code for the integers). The syntax of this initial

representation is

{{w}∧}

where we have used {} to denote repetition, as in Extended Backus Naur specifications and

where w ≤ k are inititial labels. From there we will put Ai = A0, i and choosing a pair of

labels J1 ⊂ J1, kK and a new label numbered k + 1, we will define the new sequence of sets

A1,i =





(
A0,i \ J1

)
∪ {k + 1}, when J1 ⊂ A0,i,

A0,i, otherwise.

To recover A0,i, 1 ≤ i ≤ n from A1,i, 1 ≤ i ≤ n, we need to code also the value of J1 = {a, b}.
We obtain in this way a new code. The syntax for this new code is of the form

{{w|p}∧}pab
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where p = k + 1 > k is a pair label and where | means or as in Extended Backus Naur

specifications. In order to shrink as much as possible the length of the representation, we

have to choose J1 to maximize
n∑

i=1

1
(
J1 ⊂ A0,i

)
,

the number of times it appears in the random sets A0,i, 1 ≤ i ≤ n (at least if we code labels

with a fixed length code, as we will assume for simplicity in all this discussion). We can

repeat this process choosing at each step a most frequent pair, to form new sequences of

random sets

A0,i, . . . Am,i, 1 ≤ i ≤ n.

We obtain a new shorter code at each time by concatenating the code for Am,i, 1 ≤ i ≤ n

and the list of rewriting rules defining the pairs. The syntax of such a code is thus of the

form

{{w|p}∧}{pab}

(We do not need separators in the description of the pairs, since we know they are always

triplets.) Note that w ∈ J1, kK, p ∈ Jk + 1, k + mK and that a, b ∈ J1, k + mK may be so to

speak either terminal or non terminal indices (or symbols). Note also that we can forget to

represent p explicitly in the {pab} section of the representation, since we can assume that

{pab} = p1a1b1, . . . , pmambm,

where pi = k + i. Doing this, we obtain a code of the type

{{w|p}∧}{ab}

Remark that, as long as the chosen pair appears at least three times, we decrease the length

of the representation at each step. This can be taken as a stopping rule. We can also use

a higher threshold to stop earlier (given that the frequency of the most frequent pair is

decreasing).

From an image perspective, this compression step consists in merging two fragments a

and b that are frequently seen together in the image sample (X1 . . . , Xn). Inside a fixed pair,

elements can be viewed as a context of each other. It is rather a ”main” context as it is in a

way the most frequent one. Therefore, this merging operation is twofold : it simplifies the

representation of the set Am,i and determines in the meantime the context of each fragment.

Notice that this procedure is very similar to the fragmentation step and can be seen as its

dual version in the sense that we exchange the role played by the sets A and B. Indeed, in

contrast with fragmentation, here we make Am,i smaller and create a bigger fragment Bp.

Prepare now to push the compression of the representation further by performing per-

mutations on the list of pairs

a1b1 . . . ambm
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Put ai = ci,1 and bi = ci,2. We represent the pairs by the permutation

f
(
cσ(1),ψ(1,1)

)
f
(
cσ(1),ψ(1,2)

)
. . . f

(
cσ(m),ψ(m,1)

)
f
(
cσ(m),ψ(m,2)

)
, (2.10)

where the transformation

f(c) =




c, when c ∈ J1, kK,

k + σ−1(c− k), when c ∈ Jk + 1, k +mK,

of the pair indices should also be applied to the first part of the representation, that is to

{{w|p}∧}, where p becomes f(p). Introduce the counter

ξ(c) =
∑

(i,j)∈J1,mK×{1,2}

1
(
ci,j = c

)

choose

c∗ ∈ arg max
c∈J1,k+mK

ξ(c),

and choose

σ(1), ψ(1, 1), ψ(1, 2), . . . , σ
(
ξ(c∗)

)
), ψ
(
ξ(c∗), 1

)
, ψ
(
ξ(c∗), 2

)

in such a way that

cσ(i),ψ(i,1) = c∗, 1 ≤ i ≤ ξ(c∗).

Repeat this process on the remaining pairs as many times as needed, until we have chosen

the whole permutation σ(i), ψ(i, j). After applying transformation (2.10) to the pairs aibi,

we see that each possible value of ai comes in succession. Thus we can factorize (2.10) in

the form

a1b1,1 . . . b1,q1 ∧ a2b2,1 . . . b2,q2 ∧ · · · ∧ am′bm′,1 . . . bm′,qm′∧,

where the notation is changed and we need some separators but where m′ ≤ m. (With the

new notation a1, . . . , am′ is a sequence without repetition, whereas in the previous represen-

tation (a1, . . . , am) possibly contained repeated values.) Note that the permutation in (2.10)

was chosen to maximize sequentially q1, q2, . . . , qm′ . We can then put the sequence a1 . . . am′

in front to get

a1 . . . am′ ∧ b1,1 . . . b1,q1 ∧ b2,1 . . . b2,q2 ∧ · · · ∧ bm′,1 . . . bm′,qm′∧

We don’t lose information here, since we can recover the previous representation by redis-

tributing each ai in front of the sequence of contexts bi,1 . . . bi,qi . The new syntax for the

pairs description is the grammar

G ::= {a} ∧ {{b}∧}

instead of {ab}, so that the syntax for the new sample code is

{{w|p}∧}{a} ∧ {{b}∧} (2.11)
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instead of

{{w}∧} (2.12)

(We know in the new code that the description of the random sets ends before separator ∧
number n and is followed by the description of the pairs.) Let us note that G is represented

as parameter α in section (2) and that µ(α) = 2−|G|, where |G| represents the number of

bits used to represent G. On the other hand qα(A) = 2−|D|, where D ::= {{w|p}∧} is

the description of A. We now remark that the end {{b}∧} of the new code (2.11) has

the same syntax as the initial code (2.12). We can thus compress it in the same way by

indexing iteratively the most frequent syntax pair Js = {c, d} as long as it appears at least

three times. Here the frequence is computed within the grammar G, or in other words the

frequence is the number of different contexts ai in which fragment c appears along with d

within the list bi,1 . . . bi,qi .

This analysis is different from what is usually done in statistics, where frequences are

computed within the data set (X1, . . . , Xn). Using syntax analysis, we produce a second

level of classification based on a kind of context analysis. This step is necessary if we want

to put a common (syntax) label on fragments that appear in different images at different

locations. To give an example, let us assume that we have some cats (not necessarily the

same) appearing in different images, not in the same place either, but lying on a sofa or on

a bed. In that case, we can say that we have a fixed context the sofa or the bed and that the

cats appear frequently in those two contexts. Then, our syntax analysis will tend to put a

common syntax label cat (or more accurately what appears on beds and sofas) on those lazy

cats sharing the same context.

As a matter of fact, our approach is very close to the modeling of language in which the

syntactic category of a word is usually mainly determined by the type of contexts in which it

occurs. Indeed, it is usually impossible to guess syntactic categories from words morphology.

To draw a parallel with language modeling, one can think of our images (X1, . . . , Xn) as

sentences (A1, . . . , An) containing sequences of words {{w}∧}. However, in our setting the

words w belonging to the set Aj are not ordered as in language modeling, which makes a

major difference. This contextual approach in the case of modeling image patches is not

completely new and has been applied to contextual bags of visual words in [Li+11]. However,

we use compression both to determine the context and the classification with respect to the

context. This differs from classical context modeling that requires to estimate conditional

probability distributions in order to determine the context and to perform a contextual

classification.

The syntax for the new shorter code for {{b}∧} becomes

{{b|s}∧}{cd}

so that the syntax of the new shorter code for the sample becomes

{{w|p}∧}{a} ∧ {{b|s}∧}{cd}
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This code is made of two parts. The description D ::= {{w|p}∧} of the random sets A0,i,

1 ≤ i ≤ n using a mixture of terminal symbols of type w ∈ J1, kK and of non terminal

symbols of type p ∈ Jk + 1, k +mK and the new grammar

G ::= {a} ∧ {{b|s}∧}{cd} (2.13)

specifying how to rewrite each p into a (unique) sequence of terminal symbols. This grammar

itself has been compressed using non terminal symbols of type s.

Remark now that G defines a classification function f of its symbols. Let us start with

the definition of f(p), where p ∈ Jk + 1, k +mK is a non terminal symbol. The grammar G

contains a (unique) rule p ::= ab and in the compressed representation of the context of a

Ca = {b′ : p′ ::= ab′ ∈ G}

either b has been left unchanged, in which case we set f(p) = b, or b is produced by a unique

non terminal syntax label s, in which case we define f(p) = s. When j is a terminal symbol,

that is when j ∈ J1, kK, we set f(j) = j. We obtain a classification function

f : J1, k +mK −→ J1, k +m+ tK

where t is the number of syntax pairs cd.

We can now recode the description D using the classification function f . For any j ∈
J1, k +mK we can write

f−1
(
f(j)

)
=
{
i1 < i2 < · · · < i`

}

and define h(j) as the solution of the equation j = ih(j). It is easy to see that

j 7→
(
f(j), h(j)

)
, j ∈ J1, k +mK

is one to one. Therefore we can recode the description D in the form

{{fh}∧}

More precisely we get

D = f1,1h1,1 . . . f1,r1h1,r1 ∧ · · · ∧ fn,1hn,1 . . . fn,rnhn,rn ∧ .

Gathering the values of h following the same value of f in each element of the sample we

can factorize the representation of D to obtain a code of type

{{f{h}∧}∧}

where sample elements are separated by a double sign ∧∧. Namely

D = f1,1h1,1,1 . . . h1,1,q1,1 ∧ · · · ∧ f1,r1h1,r1,1 . . . h1,r1,q1,r1
∧ ∧

· · · ∧ ∧fn,1hn,1,1 . . . hn,1,qn,1 ∧ · · · ∧ fn,rnhn,rn,1 . . . hn,rn,qn,rn ∧ ∧,
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with a change of indexation. This representation can be split into

{{f}∧}{{h}∧}

where the values of h corresponding to each value of f have been gathered on the right.

Namely, we get now

D = f1,1 . . . f1,r1 ∧ · · · ∧ fn,1 . . . fn,rn ∧ h1,1,1 . . . h1,1,q1,1 ∧ · · · ∧ hn,rn,1 . . . hn,rn,qn,rn ∧ .

In this way, we obtain a new sample code of type

{{f}∧}{{h}∧}G,

where G is as in (2.13). This code is made of a new description D made of a family

R ::= {{f}∧} of random sets with syntax labels and of a specification {{h}∧} describing

the way to rewrite each syntax label. This is followed by a grammar G describing the

meaning of non terminal labels with the help of rewriting rules.

We can now repeat the whole compression process on R to create multiple levels of

syntax analysis, resulting in the estimation of a syntax tree for each initial random set Ai,

1 ≤ i ≤ n.
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In the above figure we have represented the set of fragment labels indirectly indexed by

a pair label. This is why there may be more than two fragment labels indexed by a single

pair label. For instance, if the grammar contains p1 ::= w1p2 and p2 ::= w2w3, then we see

that p1 rewrites to w1w2w3.

At the end of the syntax analysis stage, we have computed a new shorter binary code T for

(A1, . . . , An). This results in a new lossy code (T,B,C) for the image sample (X1, . . . , Xn).

The code (T,B,C) defines an approximation (Y1, . . . , Yn) of the sample (X1, . . . , Xn) ac-

cording to the formula

Yi =
∑

j∈Ai

Cj, 1 ≤ i ≤ n,

where Ai can be computed from T . We use an algorithm that ensures that the quadratic

distortion is under a given level, namely

PI,S
[(
XI,S − YI,S

)2]
= n−1d−1‖X − Y ‖2 ≤ α.
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This is more precisely a property of the fragmentation algorithm, that is maintained after-

wards, since the following steps are lossless compression operations.

In this coding approach we do not estimate nor select from data a statistical model, and

this is precisely what we wanted to avoid, in the hope of obtaining an algorithm that can

lead to meaningful results on smaller samples. This algorithm is very simple as it combines

mainly two actions: grouping and context analysis. For this reason, it could inspire new

biological neuron models describing the way the mammals’ brain is processing perceptive

inputs. Indeed, using short codes for frequently concomitant events is compatible with the

modeling of a Pavlovian or respondent conditioning. Typically we can have in mind the cat

running to eat, as soon as she hears the sound of kibbles falling into her dish.

2.5. Relation with statistical estimation

Nonetheless, a link can be made with statistical estimation through the following com-

putations.

The algorithm we described in the previous sections produces a code θ(X1, . . . , Xn) =

(T,B,C) corresponding to an approximation (Y1, . . . , Yn) = f◦θ(X1, . . . , Xn) = g(X1, . . . , Xn)

of (X1, . . . , Xn). If we assume that T , B and C are coded by binary prefix codes, we get

by concatenation a binary prefix code for θ and we can define |θ| as the code length of θ in

bits. We can then define according to the Kraft inequality a sub-probability measure by the

formula Qθ = 2−|θ|. Since Y = f(θ), we get also a sub-probability measure on Y , putting

QY = Qθ ◦ f−1.

Consider then the measures PX,Y, V and QY, V defined by

PX = P⊗nX1
, PY |X = δg(X),

PV |X,Y = N
(
X, σ2Ind

)
, QV |Y = N

(
Y, σ2Ind

)
.

We see that as previously, V = (V1, . . . , Vn) is a noisy version of X and we can raise the

question of the prediction of PVn from the sample (V1, . . . , Vn−1). Note that PV1, ..., Vn = P⊗nV1
is an i.i.d. sequence of vector valued random variables. Consider the progressive estimator

based on QY, V and defined as

QVn |V1,...,Vn−1
=

1

n

n∑

i=1

QVn |V1,...,Vi−1
.

Using the convexity of the divergence, the fact that QV1,...,Vn is exchangeable, and the fact

that PV1,...,Vn is i.i.d, we can prove

Lemma 4

1

d
PV1,...,Vn−1

[
K
(
PVn , QVn |V1,...,Vn−1

)]
≤ 1

nd
K
(
PV1,...,Vn , QV1,...,Vn

)

≤ 1

nd
K
(
PY1,...,Yn , QY1,...,Yn

)
+

α

2σ2
≤ 1

nd
K
(
Pθ, Qθ

)
+

α

2σ2
.
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Therefore, if we can find a coding distribution Qθ and a distortion level α depending on

the sample size n such that the right-hand side goes to zero when n goes to infinity, we

obtain a consistent estimator of PVn , the distribution of the random image we sampled from

convoluted with a Gaussian noise.

The interest of this lemma is of course mainly theoretical. The idea is not to compute

QVn |V1,...,Vn−1
in practice, but only to show that in the case where the coding distribution

Qθ is sufficiently efficient to make 1
nd
K(Pθ, Qθ) small, then Qθ contains enough information

to estimate PV accurately, since QVn |V1,...,Vn−1
is a function of Qθ. This is an indication that

θ is a relevant representation of the information contained in PVn and therefore of at least

some part of the information contained in PXn (since Vn is obtained by adding some noise

to Xn).

Proof. By convexity,

PV1,...,Vn−1

[
K
(
PVn , QVn |V1,...,Vn−1

)]
≤ 1

n
PV1,...,Vn−1

( n∑

i=1

K
(
PVn , QVn |V1,...,Vi−1

))
.

Remark now that

QVn |V1,...,Vi−1
= QVi |V1,...,Vi−1

,

because, Q being exchangeable,

QV1,...,Vi−1,Vn = QV1,...,Vi .

Moreover, PVn = PVi , so that

PV1,...,Vn−1

( n∑

i=1

K
(
PVn , QVn |V1,...,Vi−1

))
= PV1,...,Vn−1

( n∑

i=1

K
(
PVi , QVi |V1,...,Vi−1

))

=
n∑

i=1

PV1,...,Vi−1

[
K
(
PVi |V1,...,Vi−1

, QVi |V1,...,Vi−1

)]
= K

(
PV1,...,Vn , QV1,...,Vn

)
.

This proves the first inequality of the lemma. To prove the second inequality, remark that

K
(
PV , QV

)
≤K

(
PY, V , QY, V

)
= K

(
PY , QY

)
+ PY

[
K
(
PV |Y , QV |Y

)]
.

But PV |Y = PX |Y
(
PV |X,Y

)
= PX |Y

(
PV |X

)
. Accordingly,

PY

[
K
(
PV |Y , QV |Y

)]
≤ PYPX |Y

[
K
(
PV |X , QV |Y

)]
=

1

2σ2
PX,Y

(
‖X − Y ‖2

)
≤ ndα

2σ2
.

This proves the second inequality of the lemma. To prove the third, it is enough to note

that, since Y = f(θ),

K
(
PY , QY

)
≤K

(
Pθ, Y , Qθ, Y

)
= K

(
Pθ, Qθ

)
.

�
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CHAPTER 3

Information k-means and information fragmentation

algorithms

3.1. Information k-means algorithms

In this part of our work, we will present and study various extensions of the k-means

algorithm for their own sake. All these variants offer a mean of estimating the distribution

PPY |X of a conditional probability measure PY |X from the observation of an i.i.d. sample

PY |X=Xi .These variants include the information fragmentation algorithm forming the first

step of the syntax analysis scheme described in the overview.

Consider a couple of random variables (X, Y ) ∈ X × Y, where X and Y are complete

separable metric spaces, so that we can define regular conditional probability measures.

Suppose there exists a reference measure ν ∈M1
+

(
Y
)

such that P
(
PY |X � ν

)
= 1. Define

pX =
dPY |X

dν
. We are interested in the case where PY |X is known and represents a bag of

words model. This means that each random sample X is described by a random probability

measure PY |X . In the original bag of words model, Y is a set of words, and PY |X is the

distribution of words in a text X drawn at random from some corpus of texts. Here we

include the case where X and Y can be more general measurable spaces.

We consider the following minimization problem also called information k-means problem

inf
q∈
(
L1
+,1(ν)

)k PX
(

min
j∈J1,kK

K(qj, pX)
)
,

where J1, kK = {1, . . . , k}, L1
+,1(ν) =

{
q ∈ L1(ν) : q ≥ 0,

∫
q dν = 1

}
and

K(qj, pX) =





∫
qj log

(
qj/pX

)
dν,

∫
qj1
(
pX = 0

)
dν = 0,

+∞, otherwise

is the Kullback divergence between densities. The purpose of this section is to discuss

the general properties of the information k-means problem and to build a mathematical
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framework and algorithms to perform the minimization. As we have seen in the overview,

we chose to study this algorithm rather than the better known k-means divergence algorithm

inf
q∈
(
L1
+,1(ν)

)k PX
(

min
j∈J1,kK

K
(
pX , qj

))

because of Proposition 2 on page 17, showing that our proposal contains the classical Eu-

clidean k-means as a special case.

Let us state some version of the Bayes rule that will be useful in the following discussion.

Lemma 5 Let PX,Y be a joint distribution defined on the product of two Polish spaces. The

following statements are equivalent:

1. There exists a measure µ such that PY |X � µ, PX almost surely;

2. PY |X � PY , PX almost surely;

3. PX,Y � PX ⊗ PY ;

4. PX |Y � PX , PY almost surely.

Moreover, they imply the following identities between Radon–Nikodym derivatives:

dPX,Y

d
(
PX ⊗ PY

) =
dPY |X
dPY

=
dPX |Y
dPX

.

Proof. To prove that 1. implies 2., it is sufficient to show that PY |X

(
dPY
dµ

= 0
)

= 0,

PX almost surely. But when 1. is true

PY |X

(
dPY
dµ

= 0

)
=

∫
1

(
dPY
dµ

= 0

)
dPY |X

dµ
dµ.

Thus by the Tonelli-Fubini theorem

PX

(
PY |X

(
dPY
dµ

= 0

))
= PX

(∫
1

(
dPY
dµ

= 0

)
dPY |X

dµ
dµ

)

=

∫
1

(
dPY
dµ

= 0

)
PX

[
dPY |X

dµ

]
dµ

=

∫
1

(
dPY
dµ

= 0

)
dPY
dµ

dµ = 0.

Therefore PY |X

(
dPY
dµ

= 0
)

= 0, PX almost surely. Obviously 2. implies 1. Now let us show

that 2. implies 3. Let f be a bounded measurable function, we have by Fubini’s theorem

∫
f dPX,Y =

∫ (∫
f dPY |X

)
dPX =

∫ (∫
f

dPY |X
dPY

dPY

)
dPX

=

∫
f

dPY |X
dPY

d
(
PY ⊗ dPX

)
,
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implying 3. and that PX almost surely

dPY |X
dPY

=
dPX,Y

d
(
PX ⊗ PY

) .

We will show now that 3. implies 2. Let f be a bounded measurable function, we have by

Fubini’s theorem
∫
f dPX,Y =

∫
f

dPX,Y

d
(
PX ⊗ PY

) d
(
PX ⊗ dPY

)

=

∫ (∫
f

dPX,Y

d
(
PX ⊗ PY

) dPY

)
dPX

=

∫ (∫
f dPY |X

)
dPX ,

showing that PX almost surely PY |X � PY and

dPY |X
dPY

=
dPX,Y

d
(
PX ⊗ PY

) .

The equivalence between 3. and 4. is immediate by interchanging the roles of X and Y . �

The following lemma will be useful to optimize the information k-means criterion.

Lemma 6 Let π ∈M1
+(Ω) be a probability measure on the measurable space Ω. Let h : Ω→

R ∪ {+∞} be a measurable function such that

Z =

∫
exp(−h) dπ <∞.

Let πexp(−h) be the probability measure whose density with respect to π is proportional to

exp(−h) so that
dπexp(−h)

dπ
=

exp(−h)

Z
.

The identity

inf
η∈Z

(
K(ρ, π) +

∫
max{h, η} dρ

)
= − log

(∫
exp(−h) dπ

)
+ K(ρ, πexp(−h)) ∈ R ∪ {+∞}

is satisfied for any ρ ∈M1
+(Ω) and implies that

inf
ρ∈M1

+(Ω)
inf
η∈Z

(
K(ρ, π) +

∫
max{h, η} dρ

)
= − log

(∫
exp(−h) dπ

)
,

the minimum being reached when ρ = πexp(−h).

Note that the lemma could also be written as

K(ρ, π) +

∫
h dρ = − log

(∫
exp(−h) dπ

)
+ K

(
ρ, πexp(−h)

)
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if we are willing to follow the convention that
∫
h dρ = inf

η∈Z

∫
max{h, η} dρ

and that +∞−∞ = +∞.

Proof. See [Cat04, page 159]. Note that the role of η ∈ Z in this lemma is only to make

sure that the integrals are always well defined in R ∪ {+∞} in the sense that the negative

part of the integrand is integrable. When ρ is not absolutely continuous with respect to π,

it is also not absolutely continuous with respect to πexp(−h) since π(A) = 0 if and only if

πexp(−h)(A) = 0. In this case K(ρ, π) = K(ρ, πexp(−h)) = +∞ and the identity is true, both

sides being equal to +∞. When ρ� π, then ρ� πexp(−max{h,η}) and

dρ

dπexp(−max{h,η})
= Zη exp(max{h, η}) dρ

dπ
,

where

Zη =

∫
exp(−max{h, η}) dπ < +∞.

Therefore

K
(
ρ, πexp(−max{h,η})

)
= log

(
Zη
)

+

∫ [
max{h, η}+ log

(dρ

dπ

)]
dρ.

By the monotone convergence theorem

lim
η→−∞

Zη = Z and lim
η→−∞

∫ [
max{h, η}+ log

(dρ

dπ

)]
dρ =

∫ [
h+ log

(dρ

dπ

)]
dρ,

since we know that
∫ [

log(Z) + h+ log
(dρ

dπ

)]
−

dρ =

∫
log
( dρ

dπexp(−h)

)
−

dρ

dπexp(−h)

dπexp(−h) ≤ exp(−1) < +∞

and therefore that ∫ [
h+ log

(dρ

dπ

)]
−

dρ < +∞.

This proves that

lim
η→−∞

K
(
ρ, πexp(−max{h,η})

)
= log(Z) +

∫ [
h+ log

(dρ

dπ

)]
dρ = K

(
ρ, πexp(−h)

)

= log(Z) + inf
η∈Z

∫ [
max{h, η}+ log

(dρ

dπ

)]
dρ

= log(Z) + inf
η∈Z

(∫
max{h, η} dρ+

∫
log
(dρ

dπ

)
dρ

)

= log(Z) + inf
η∈Z

(∫
max{h, η} dρ+ K(ρ, π)

)
,

and therefore that

K
(
ρ, πexp(−h)

)
− log(Z) = inf

η∈Z

(
K(ρ, π) +

∫
max{h, η} dρ

)

as stated in the lemma. The second statement of the lemma is a consequence of the fact

that the Kullback divergence is non negative. �
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Lemma 7 Let PX,Y be a joint distribution defined on the product of two Polish spaces.

Assume that PX
(
PY |X � PY

)
= 1. Consider the normalizing constant

Z = PY

(
exp
[
−K

(
PX , PX |Y

)])
.

Obviously, Z ∈ [0, 1]. If Z = 0, then

inf
QY ∈M1

+(Y)
PX
[
K(QY ,PY |X)

]
= +∞.

Otherwise, Z > 0 and for any QY ∈M1
+(Y),

PX
[
K
(
QY ,PY |X

)]
= K

(
QY , Q

?
Y

)
+ PX

[
K
(
Q?
Y ,PY |X

)]
= K

(
QY , Q

?
Y

)
+ log

(
Z−1

)
,

where Q?
Y � PY is defined by the relation

dQ?
Y

dPY
= Z−1 exp

[
−K

(
PX , PX |Y

)]

= Z−1 exp

{
PX

[
log

(
dPY |X
dPY

)]}
. (3.1)

Consequently

inf
QY ∈M1

+(Y)
PX
[
K(QY ,PY |X)

]
= PX

[
K(Q?

Y ,PY |X)
]

= log
(
Z−1

)
<∞,

The probability measure Q?
Y represents the geometric mean of PY |X with respect to PX .

Proof. By Lemma 1 on page 9,

PX
[
K
(
QY ,PY |X

)]
= K

(
PX ⊗QY ,PX,Y

)]
= K

(
QY ,PY

)
+QY

[
K
(
PX ,PX |Y

)]
. (3.2)

Thus, when (3.2) is finite, QY � PY and

QY

[
K
(
PX ,PX |Y

)
< +∞

)]
= 1,

so that

PY

[
K
(
PX ,PX |Y

)
< +∞

)]
> 0,

implying that Z > 0. Assuming from now on that (3.2) is finite, introduce

A =
{
y : K

(
PX ,PX |Y=y

)
< +∞

}
.

From Lemma 6 on page 41 and (3.2), for any QY ∈M1
+(A),

PX
[
K
(
QY ,PY |X

)]

= − log
[
PY (A)

]
− logPY |Y ∈A

{
exp
[
−K

(
PX ,PX |Y

)]}

︸ ︷︷ ︸
=log
(
Z−1
)

+K
(
QY , Q

?
Y

)

= PX
[
K
(
Q?
Y ,PY |X

)]
+ K

(
QY , Q

?
Y

)
.

Moreover, when QY (A) < 1, QY 6� Q?
Y , so that both members are equal to +∞. The

identity (3.1) is a consequence of Lemma 5 on page 40. �
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Proposition 8 The information k-means problem can be expressed as

inf
q∈
(
L1
+,1(ν)

)k PX
(

min
j∈J1,kK

K(qj, pX)
)

= inf
`:X7→J1,kK

inf
(q1,...,qk)∈

(
L1
+,1(ν)

)k PX
(
K(q`(X), pX)

)

= inf
(q1,...,qk)∈

(
L1
+,1(ν)

)k inf
`:X7→J1,kK

PX

(
K(q`(X), pX)

)

= inf
(q1,...,qk)∈

(
L1
+,1(ν)

)k PX
(
K(q`?q(X), pX)

)

= inf
`:X 7→J1,kK

PX

(
K(q?,``(X), pX)

)

= inf
`:X7→J1,kK

PX

(
log
(
Z−1
`(X)

))
,

where `?q : X 7→ J1, kK is the best classification function for a fixed q = (q1, . . . , qk) defined as

`?q(x) = arg min
j∈J1,kK

K(qj, px), x ∈ X,

whereas q?,`1 , . . . , q?,`k are the best information k-means centers with respect to `(X) defined

as

q?,`j = Z−1
j exp

{
PX | `(X)=j

[
log(pX)

]}
, j ∈ J1, kK,

where

Zj =

∫
exp
{
PX | `(X)=j

[
log(pX)

]}
dν,

with the convention that q?,`j can be given any arbitrary value in the case when Zj = 0, the cor-

responding criterion being in this case infinite. Besides, we have the following Pythagorean

identity

PX

(
K(q`(X), pX)

)
= PX

(
K(q?,``(X), pX)

)
+ PX

(
K
(
q`(X), q

?,`
`(X)

))
.

Proof. This proposition is a straightforward consequence of Lemma 7 applied to PX,Y | `(X)=j.

�

Let us state the empirical counterpart of the previous proposition.

Corollary 9 Let X1, . . . , Xn be an i.i.d sample drawn from PX . Then, the empirical

version of the information k-means problem tries to partition the observations pX1 , . . . , pXn
into k-clusters, what is expressed here by

inf
q∈
(
L1
+,1(ν)

)k
1

n

n∑

i=1

min
j∈J1,kK

K
(
qj, pXi

)
= inf

`:J1,nK→J1,kK
inf

q∈
(
L1
+,1(ν)

)k
1

n

n∑

i=1

K
(
q`(i), pXi

)

= inf
q∈
(
L1
+,1(ν)

)k inf
`:J1,nK→J1,kK

1

n

n∑

i=1

K
(
q`(i), pXi

)
= inf

q∈
(
L1
+,1(ν)

)k
1

n

n∑

i=1

K
(
q`?q(i), pXi

)

= inf
`:J1,nK→J1,kK

1

n

n∑

i=1

K
(
q?,``(i), pXi

)
= inf

`:J1,nK→J1,kK

k∑

j=1

∣∣`−1(j)
∣∣

n
log
(
Z−1
j

)
,
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where `?q : X 7→ J1, kK is the best classification function for a fixed q = (q1, . . . , qk) defined as

`?q(i) = arg min
j∈J1,kK

K(qj, pXi)

whereas q?,`j , j ∈ J1, kK are the information k-means centers defined as

q?,`j = Z−1
j

( ∏

i∈`−1(j)

pXi

)1/|`−1(j)|

,

where

Zj =

∫ ( ∏

i∈`−1(j)

pXi

)1/|`−1(j)|

dν.

Proof. Apply the previous proposition to the empirical measure PX =
1

n

n∑

i=1

δXi of the

sample X1, . . . , Xn. �

Lemma 10 Let us assume that PX

(∫
p2
X dν

)
< ∞. Then, the optimal centers q?,`j defined

in the previous lemma verify q?,`j ∈ L2(ν). Furthermore, in this case

inf

{
PX

(
min
j∈J1,kK

K(qj, pX)
)

: q ∈
(
L1

+,1(ν)
)k }

= inf

{
PX

(
min
j∈J1,kK

K(qj, pX)
)

: q ∈
(
L1

+,1(ν) ∩ L2(ν)
)k }

.

Proof. Apply Jensen’s inequality and the Fubini-Tonelli theorem to obtain that q?,`j ∈
L2(ν). Indeed, for any j ∈ J1, kK, if Zj = 0, we can pick up any value for q?,`j , and in

paticular a value in L2(ν), in the same way if PX(`(X) = j) = 0, we can make an arbitrary

choice for q?,`j , otherwise, Zj > 0, and

∫
(q?,`j )2 dν = Z−2

j

∫
exp

{
2PX | `(X)=j

[
log(pX)

]}
dν

≤ Z−2
j PX | `(X)=j

(∫
p2
X dν

)
≤ Z−2

j PX
(
`(X) = j

)−1
PX

(∫
p2
X dν

)
<∞

Then according to Proposition 8 on the facing page

PX

[
min
j∈J1,kK

K
(
qj, pX

)]
= inf

`:X 7→J1,kK
PX

[
K
(
q`(X), pX

)]

≥ inf
`:X 7→J1,kK

PX

[
K
(
q?,``(X), pX

)]
≥ inf

`:X7→J1,kK
PX

[
min
j∈J1,kK

K
(
q?,`j , pX

)]
,

showing that we can restrict the opimization to qj ∈ L2(ν). �

Proposition 11 Consider the particular case when X = Y = Rp and choose as reference

measure the Gaussian measure ν = Np

(
0Rp , σ

2Ip
)
. Choose also PY |X = Np

(
X, σ2Ip

)
where
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σ > 0. In this particular setting, the information k-means problem is identical to the classical

euclidian k-means problem. Namely

inf
q∈
(
L1
+,1(ν)

)k PX
(

min
j∈J1,kK

K(qj, pX)
)

= inf
`:X7→J1,kK

1

2σ2
PX

(∥∥X − PX | `(X)(X)
∥∥2

2

)

= inf
`:X 7→J1,kK

inf
µ1,...,µk∈Rp×k

1

2σ2
PX

(
‖X − µ`(X)‖2

2

)

= inf
µ1,...,µk∈Rp×k

1

2σ2
PX

(
min
j∈J1,kK

‖X − µj‖2
2

)
.

Proof. In this situation, pX is equal to

pX(y) =
dNp

(
X, σ2Ip

)

dν
(y) = exp

{
− 1

2σ2

(∥∥y −X
∥∥2

2
−
∥∥y
∥∥2

2

)}

= exp
{
− 1

2σ2

(∥∥X
∥∥2

2
− 2y>X

)}
.

According to Proposition 8 on page 44 for a given classification function `, the optimal

centers in the information k-means problem are given by

q?,`j = Z−1
j exp

{
PX | `(X)=j

[
log(pX)

]}
, j ∈ J1, kK.

Accordingly

q?,`j (y) = Z−1
j exp

{
− 1

2σ2
PX | `(X)=j

(∥∥X
∥∥2

2
− 2y>X

)}
=

dNp

(
PX | `(X)=j(X), σ2Ip

)

dν
.

Then, computing the Kullback divergence between two multivariate normal distributions,

we obtain

K
(
q?,`j , pX

)
= K

(
Np

(
PX | `(X)=j(X), σ2Ip

)
,Np

(
X, σ2Ip

))
=

1

2σ2

∥∥X − PX | `(X)=j(X)
∥∥2

2
.

Thus from Proposition 8 on page 44, the information k-means loss is such that

inf
q∈
(
L1
+,1(ν)

)k PX
(

min
j∈J1,kK

K(qj, pX)
)

= inf
`:X7→J1,kK

PX

(
K(q?,``(X), pX)

)

= inf
`:X7→J1,kK

1

2σ2
PX

(∥∥X − PX | `(X)(X)
∥∥2

2

)
.

Besides,

inf
µ1,...,µk∈Rp×k

PX

(
min
j∈J1,kK

∥∥X − µj
∥∥2
)

= inf
`:X→J1,kK

inf
µ1,...,µk∈Rp×k

PX

(∥∥X − µ`(X)

∥∥2

2

)

= inf
`:X→J1,kK

inf
µ1,...,µk∈Rp×k

{
PX

(∥∥X − PX | `(X)(X)
∥∥2

2

)
+ PX

(∥∥PX | `(X)(X)− µ`(X)

∥∥2

2

)}

= inf
`:X→J1,kK

PX

(∥∥X − PX | `(X)(X)
∥∥2

2

)
.

�
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We are now going to linearize the information k-means algorithm, using the kernel trick.

Let us introduce the separable Hilbert space H = {(f, x) ∈ L2(ν) × R} equipped with the

inner-product

〈h, h′〉 = 〈h1, h
′
1〉L2(ν) + µh2 h

′
2, h = (h1, h2), h′ = (h′1, h

′
2) ∈ H,

where µ > 0 is a positive real parameter to be chosen afterwards. The associated norm is

‖(h1, h2)‖ =
√
〈h1, h1〉L2(ν) + µh2

2 =

√∫
h2

1 dν + µh2
2 , h = (h1, h2) ∈ H.

Define for any constant B ∈ R+

ΘB =
{(
q,K(q, 1)

)
: q ∈ L1

+,1(ν) ∩ L2(ν),
∫
q2 dν ≤ B2

}
⊂ H,

this definition being justified by the fact that

K(q, 1) =

∫
q log(q) dν ≤ log

(∫
q2 dν

)
< +∞ (3.3)

whenever
∫
q2 dν < +∞.

Lemma 12 Assume that ess sup
X

∫
log(pX)2 dν < ∞ and ess sup

X

∫
p2
X dν < ∞. Remark

first that the smallest information ball containing the support of PpX satisfies

inf
q∈L1

+,1(ν)
ess sup

X
K(q, pX) ≤ ess sup

X
K(1, pX)

= ess sup
X

∫
log
(
p−1
X

)
dν ≤ ess sup

X

(∫
log(pX)2 dν

)1/2

<∞.

Define B = ess sup
X

(∫
p2
X dν

)1/2

exp

[
inf

q∈L1
+,1(ν)

ess sup
X

K(q, pX)

]
<∞ and consider the ran-

dom variable

W =
(
− log(pX), µ−1

)
∈ H.

The following two minimization problems are equivalent

inf
q∈
(
L1
+,1(ν)

)k PX
(

min
j∈J1,kK

K(qj, pX)
)

= inf
θ∈ΘkB

PW

(
min
j∈J1,kK

〈θj,W 〉H
)
.

Proof. Let B′ = ess sup
X

(∫
p2
X dν

)1/2

and C = ess sup
X

(∫
log(pX)2 dν

)1/2

. First let us

remark that under the hypothesis of the lemma, the information k-means criterion is finite.

Indeed,

inf
q∈
(
L1
+,1(ν)

)k PX
(

min
j∈J1,kK

K
(
qj, pX

))
≤ PX

(
K(1, pX)

)
= PX

(∫
log
(
p−1
X

)
dν

)
≤ C <∞.
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Now, for any classification function ` : X 7→ J1, kK for which the criterion is finite, we know

from Lemma 10 on page 45 that q?,`j ∈ L2(ν) and we can remark that

K
(
q?,`j , pX

)
= 〈θ?,`j ,W 〉H

where θ?,`j =
(
q?,`j ,K(q?,`j , 1)

)
. So, it is sufficient to conclude the proof to show that θ?,`j ∈ ΘB.

As in the proof of Lemma 10 on page 45,

∫
(q?,`j )2 dν ≤ Z−2

j PX | `(X)=j

(∫
p2
X dν

︸ ︷︷ ︸
≤B′2

)
≤ Z−2

j B′
2
, j ∈ J1, kK.

By Jensen’s inequality, for any j ∈ J1, kK,

Zj = sup
q∈L1

+,1(ν)

∫
q exp

{
PX | `(X)=j

[
log(pX/q)

]}
dν

≥ sup
q∈L1

+,1(ν)

exp

{
PX | `(X)=j

[∫
q log(pX/q)

]}

= exp
{
− inf

q∈L1
+,1(ν)

PX | `(X)=j

[
K
(
q, pX

)]}
.

Hence

Z−1
j ≤ exp

{
inf

q∈L1
+,1(ν)

ess sup
X

K(q, pX)
}
≤ exp(C).

Therefore

(∫
(q?,`j )2 dν

)1/2

≤ B′ exp
[

inf
q∈L1

+,1(ν)
ess sup

X
K(q, pX)

]
= B ≤ B′ exp(C) <∞,

proving that B <∞ and that θ?,`j =
(
q?,`j ,K(q?,`j , 1)

)
∈ ΘB, which concludes the proof. �

Proposition 13 Under the hypotheses of the previous lemma there exists an optimal quan-

tizer θ? ∈ Θk
B minimizing the k-means risk, that is such that

E
(

min
j∈J1,kK

〈θ?j ,W 〉
)

= inf
θ∈ΘkB

E
(

min
j∈J1,kK

〈θj,W 〉
)
.

Proof. This follows the proof of Theorem 3.2 in [Fis10]. Remark first that for any w ∈ H,

Hk −→ R

θ 7−→ min
j∈J1,kK

〈θj, w〉

is weakly continuous, since, by definition of the weak topology of H, θ 7→ 〈θj, w〉 are, and

taking a finite minimum is a continuous operation. Note that

‖ΘB‖ = sup
θ∈ΘB

‖θ‖ ≤
√
B2 + µ log(B2)2 < +∞,
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according to equation (3.3) on page 47. Therefore ΘB is weakly relatively compact. Let

(θn)n∈N be a bounded sequence in Hk, converging weakly to θ. By the dominated conver-

gence theorem

lim
n→∞

PW

(
min
j∈J1,kK

〈θn,j,W 〉
)

= PW

(
lim
n→∞

min
j∈J1,kK

〈θn,j,W 〉
)

= PW

(
min
j∈J1,kK

〈θj,W 〉
)
,

since
∣∣ min
j∈J1,kK

〈θn,j,W 〉
∣∣ ≤‖θn‖ ‖W‖∞, where ‖W‖∞ = ess sup‖W‖ < +∞. Thus

R : θ 7→ PW
(

min
j∈J1,kK

〈θj,W 〉
)

is weakly continuous on the weak closure Θ
k

B of the weakly relatively compact set Θk
B.

Therefore, it reaches its minimum θ̃ on Θ
k

B. Remark that, since

K(q, 1) = sup
h∈L2(ν)

∫
hq dν − log

(∫
exp(h) dν

)
,

according to the Donsker Varadhan representation, the function q 7→ K(q, 1) defined on

L2(ν)∩L1,+(ν) is weakly lower semicontinuous. Indeed, it is a supremum of weakly continu-

ous function. Accordingly, its epigraph is weakly closed. As ΘB belongs to this epigraph, its

weak closer also belongs to it. This implies that for each j ∈ J1, kK, θ̃j belongs to it, so that

θ̃ =
(
(qj, yj), j ∈ J1, kK

)
, where yj ≥ K(qj, 1). Let us put θ? =

((
qj,K(qj, 1)

)
, j ∈ J1, kK

)
.

By monotonicity of R with respect to yj, the corresponding coefficient of W being positive,

inf
θ∈ΘkB

R(θ) = inf
θ∈Θ

k
B

R(θ) = R(θ̃) ≥ R(θ?).

Since θ? ∈ Θk
B, the reverse inequality also holds and R(θ?) = inf

θ∈ΘkB

R(θ). Note that we used

the weak topology, since the unit ball of H is not strongly compact when the dimension of

H is infinite. �

3.2. Information fragmentation

We are now going to set information k-means into a broader context. This will lead us

to propose modified criteria and more general representations, for bag of words, and more

generally for random signals, observed through a statistical sample.

We consider as in the previous sections a couple of random variables (X, Y ) ∈ X × Y

such that P
(
PY |X � ν

)
= 1 for some dominating measure ν ∈M1

+(Y). We assume that X

and Y are Polish spaces, so that regular conditional probability measures exist.

3.2.1. Recall of the information k-means setting. In information k-means, we

were trying to find a random variable W = `(X) ∈ J1, kK and a conditional probability

measure QY |W minimizing

PX,W

[
K
(
QY |W ,PY |X

)]
.
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3.2.2. First generalization: estimating a joint distribution. Instead of esti-

mating the conditional probability measure PY |X , we may be willing to estimate the joint

distribution PX,Y by some simpler measure QX,Y . If we are willing to use the same simpli-

fication as in information k-means, we are led to assume that

QY |X = QY |W , (3.4)

where W = `(X) ∈ J1, kK is a measurable function of X. Meanwhile, the first marginal QX

can be left unconstrained. Note that condition (3.4) implies that

QX,Y |W = QX |W QY |W ,

since QX,Y |W = QX |W QY |X,W and QY |X,W = QY |X = QY |W from (3.4).

If we still want to use an information criterion, we are led to consider the minimization

of

K
(
QX,Y ,PX,Y

)
.

From Lemma 1 on page 9, it decomposes into

K
(
QX,Y ,PX,Y

)
= K

(
QX ,PX

)
+QX

[
K
(
QY |X ,PY |X

)]

= K
(
QX ,PX

)
+QX,W

[
K
(
QY |W ,PY |X

)]
.

Remark first that if, instead of leaving QX unconstrained, we let QX = PX , we get that

QX,W = PX,W (since W = `(X)), and we fall back on the information k-means problem.

Let us see now what happens if we let QX be free and use the optimal value of this

distribution. From Lemma 6 on page 41, we obtain

inf
QX

K
(
QX,Y ,PX,Y

)
= inf

QX

{
K
(
QX ,PX

)
+QX

[
K
(
QY | `(X),PY |X

)]}

= − log
{
PX

[
exp
(
−K

(
QY | `(X),PY |X

))]}
,

where the optimal value of QX is absolutely continuous with respect to PX , with density

dQX

dPX
= Z−1 exp

[
−K

(
QY | `(X),PY |X

)]
. (3.5)

Proposition 14 Consider the modified k-means criterion

C
(
` : X→ J1, kK, µj ∈M1

+

(
Y
)
, 1 ≤ j ≤ k

)
= − log

{
PX

[
exp
(
−K

(
µ`(X),PY |X

))]}
.

For a given set of k probability measures µj ∈M1
+

(
Y
)
, 1 ≤ j ≤ k, the optimal classification

function ` is

`?(X) = arg min
j∈J1,kK

K
(
µj,PY |X

)
.
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For a given classification function ` : X→ J1, kK, we can lower the criterion introducing QX

defined by its density
dQX

dPX
= Z−1 exp

[
−K

(
µ`(X),PY |X

)]

and
dµ′j
dν

= Z−1 exp

{
QX|`(X)=j

[
log

(
dPY |X

dν

)]}
, 1 ≤ j ≤ k.

We obtain that

C
(
`, µ′j, 1 ≤ j ≤ k

)
= C

(
`, µj, 1 ≤ j ≤ k

)
−QX

[
K
(
µ`(X), µ

′
`(X)

)]
.

Thus we have a descent algorithm that can reach a local minimum of the criterion and can

play the role that Lloyd’s algorithm plays for the previous information k-means criterion.

3.2.3. Information fragmentation. So far, we have made the hypotheses that W =

`(X) and that

QY |X = QY |W , (3.6)

meaning that under the probability Q the conditional probability measures QY |X=x are

equal for all x ∈ `−1(j). In this setting, Q is a good approximation of P when QY |W=j is a

good approximation of PY |X=x for each x ∈ `−1(j).

Moreover, hypothesis (3.6) can equivalently be written in the two following forms:

QY |X,W = QY |W ,

or equivalently QX,Y |W = QX |W QY |W .
(3.7)

These two last formulations are equivalent without any hypothesis on W , since it is always

the case that QX,Y |W = QX |W QY |X,W . On the other hand they may not be equivalent to

(3.6) when W is not assumed to be a measurable function of X.

In the current section, we will relax the constraint onW toW = `(X, Y ) ∈ J1, kK, in other

words we will assume that W is a measurable function of (X, Y ), or that σ(W ) ⊂ σ(X, Y ).

This means that, instead of giving a label W to each bag of words X, we now give labels to

each word Y of each bag of words X. In the mean time, we will keep hypothesis (3.7) on Q.

In this new setting,

QY |X = QW |X
(
QY |X,W

)
= QW |X

(
QY |W

)
.

This means that under Q the conditional probability measure QY |X describing the content

of the signal X is a mixture of k fragments QY |W=j, 1 ≤ j ≤ k. We see therefore that

the power of approximation of this new model is greater than the previous one. While in

the previous model each bag of words PY |X had to be close to a model QY |W taking only

k possible values, in the new model each bag of words PY |X has to be close to a linear

combination of k fragments QY |W .
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Another important interpretation of the new model comes from the identity

QX,Y = QW

(
QX |W ⊗QY |W

)
.

It shows that we are looking for an approximation of PX,Y by a mixture of k product

distributions.

If we were to achieve this with the usual EM algorithm for mixture estimation, we would

try to minimize

inf
W,Q

K
(
PX,Y , QX,Y

)

(or rather to decrease this criterion iteratively). This would fit into the usual framework

of statistical inference that is to find a model that can predict with the highest possible

probability all observed data configurations.

Here, in connection with the information k-means algorithm, we raise the question of

minimizing the reverse divergence

inf
W,Q

K
(
QX,Y , PX,Y

)
.

In this framework, instead of looking for a model that can predict all the observations, we

look for a model whose predictions can all be observed with the highest possible probability.

This is closer to what is held for a valid theory in experimental sciences. In physics, for

instance, a model is considered to be valid if all its predictions can be observed. On the

other hand, a model that can predict all observations at the price of also predicting events

that cannot be observed would be considered as false or not relevant.

Let us now state the equivalent of Proposition 14 on page 50, that is let us describe the

generalization of Lloyd’s algorithm to information fragmentation.

Proposition 15 Consider k centers µj ∈M1
+

(
Y
)
, 1 ≤ j ≤ k. Let

T =
{
A ⊂ J1, kK : µi ⊥ µj, i 6= j ∈ A

}

be the set of tilings by mutually singular probability measures µj. The partial minimum

inf
QX, Y

K
(
QX,Y ,PX,Y

)

taken on all probability measures QX,Y , such that for some measurable function ` : X×Y→
J1, kK,

QX,Y

[
QY |X, `(X,Y ) = µ`(X,Y )

]
= 1 (3.8)

is equal to

− sup
`

log

{
PX

(
k∑

j=1

1
[
µj

(
`−1
X (j)

)
= 1
]

exp
[
−K

(
µj, PY |X

)]
)}

= − logPX

(
sup
A∈T

{∑

j∈A

exp
[
−K

(
µj,PY |X

)]
})

,
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where

`x : Y→ J1, kK

y 7→ `(x, y).

For any given choice of `, putting W = `(X, Y ), the optimum in QW,X is reached when

dQW,X

dPW,X
= Z−1 exp

[
−K

(
µW ,PY |W,X

)]
. (3.9)

Symmetric formulas apply when we exchange the role of X and Y . They describe the opti-

mization on all probability measures QX,Y such that

QX,Y

[
QX |Y, `(X,Y ) = ρ`(X,Y )

]
= 1,

where ρj ∈M1
+

(
X
)
, 1 ≤ j ≤ k are given. Note that in this case, the optimal value of QW,Y

is given by
dQW,Y

dPW,Y
= Z−1 exp

[
−K

(
ρW ,PX |W,Y

)]
,

and that we can use the identity

K
(
ρW , PX |W,Y

)
= K

(
ρW ,PX |W

)
− ρW

[
log

(
dPY |W,X
dPY |W

)]
, (3.10)

to avoid computing PX |Y,W explicitly.

Iterating these two optimization steps, we reach a local minimum for the optimization on

all probability measures QX,Y , such that for some measurable function ` : X× Y→ J1, kK

QX,Y

[
QX,Y | `(X,Y ) = QX | `(X,Y ) ⊗QY | `(X,Y )

]
= 1.

Proof. Assume for the moment that the classification function ` is fixed. Note that

QY |X, `(X,Y )=j = QY |X,Y ∈`−1
X (j).

Let us set

QY |X,Y ∈`−1
X (j) = µj,

whenever µj
[
`−1
X (j)

]
= 1, and give it any arbitrary value otherwise. Let us set QW,X as

described in equation (3.9). This defines QX,Y . Remark that condition (3.8) is satisfied.

Indeed
dQW |X

dPW |X
(j) = Z−1

X exp
[
−K

(
µj, PY |X,W=j

)]
,

so that when µj
[
`−1
X (j)

]
< 1, K

(
µj,PY |X,W=j

)
= K

(
µj,PY |X,Y ∈`−1

X (j)

)
= +∞ and therefore

QW |X(j) = Q
(
`(X, Y ) = j |X

)
= 0. Thus

QY |X

[
`(X, Y ) ∈

{
j : µj

[
`−1
X (j)

]
= 1
}]

= 1,
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implying condition (3.8) according to the construction of QY |X, `(X,Y )=j.

From the decomposition formula for the Kullback divergence (Lemma 1 on page 9), any

probability measure Q′X,Y satisfying condition (3.8) is such that

K
(
Q′X,Y ,PX,Y

)
= K

(
Q′X,Y,W ,PX,Y,W

)
= K

(
Q′X,W ,PX,W

)
+Q′X,W

[
K
(
µW ,PY |X,W

)]
.

Therefore, according to Lemma 6,

inf
Q′X,W

K
(
Q′X,Y ,PX,Y

)
= K

(
QX,Y ,PX,Y

)
= − log

{
PX,W

[
exp
(
−K

(
µW ,PY |X,W

))]}
.

Remark that
dPY |X,W
dPY |X

=
dPW |X,Y
dPW |X

,

so that

K
(
µW ,PY |X,W

)
= K

(
µW ,PY |X

)
− µW

[
log

(
dPY |X,W
dPY |X

)]

= K
(
µW ,PY |X

)
− µW

[
log

(
dPW |X,Y
dPW |X

)]
.

Accordingly,

PW |X

[
exp
(
−K

(
µW ,PY |X,W

))]

= PW |X

{
exp

{
−K

(
µW ,PY |X

)
+ µW

[
log

(
dPW |X,Y
dPW |X

)]}}

=
k∑

j=1

1
[
PY |X

(
`−1
X (j)

)
> 0
]

exp
[
−K

(
µj,PY |X

)
+ µj

[
log
(
1
(
`(X, Y ) = j

)]]

=
k∑

j=1

1
[
PY |X

(
`−1
X (j)

)
> 0
]
1
[
µj
(
`−1
X (j)

)
= 1
]

exp
[
−K

(
µj,PY |X

)]

=
k∑

j=1

1
[
µj
(
`−1
X (j)

)
= 1
]

exp
[
−K

(
µj,PY |X

)]
,

because when µj
(
`−1
X (j)

)
= 1 and K

(
µj,PY |X

)
< +∞, necessarily µj � PY |X , so that

PY |X
(
`−1
X (j)

)
> 0. Therefore

inf
{
K
(
QX,Y ,PX,Y

)
: QX,Y satisfies (3.8) for some `

}

= − sup
`

log

[
PX

(
k∑

j=1

1
[
µj
(
`−1
X (j)

)
= 1
]

exp
[
−K

(
µj,PY |X

)]
)]

.

For a given classification function `, consider

AX(`) =
{
j : µj

(
`−1
X (j)

)
= 1
}
.
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The measures
{
µj, j ∈ AX(`)

}
being concentrated on disjoint sets, they are by definition

mutually singular, so that AX(`) ∈ T. Therefore

sup
`

log

[
PX

(
k∑

j=1

1
[
µj
(
`−1
X (j)

)
= 1
]

exp
[
−K

(
µj,PY |X

)]
)]

= sup
`

log

[
PX

( ∑

j∈AX(`)

exp
[
−K

(
µj,PY |X

)]
)]

≤ log

[
PX

(
sup
A∈T

{∑

j∈A

exp
[
−K(µj,PY |X

)]
})]

.

On the other hand, when the measures
{
µj, j ∈ A

}
are mutually singular, that is when

A ∈ T, we can find disjoint measurable sets
{
Bj(A) ⊂ Y, j ∈ A

}
, such that µj

(
Bj(A)

)
=

1, j ∈ A, and therefore we can find a measurable function `A : Y → J1, kK such that

µj
(
`−1
A (j)

)
= 1, for any j ∈ A. Let

Ax = arg max
A∈T

∑

j∈A

exp
[
−K

(
µj,PY |X=x

)]
, x ∈ X.

Let us define `? by the formula `?x = `Ax , x ∈ X. Since

x 7→
∑

j∈A

exp
[
−K

(
µj,PY |X=x

)]

is measurable, x 7→ Ax is measurable and therefore x 7→ `Ax is measurable, taking its values

in a finite set of measurable functions, implying that `? is measurable. Remark that

log

[
PX

(
sup
A∈T

{∑

j∈A

exp
[
−K(µj,PY |X

)]
})]

= log

[
PX

(∑

j∈AX

exp
[
−K(µj,PY |X

)]
})]

≤ log

[
PX

(
k∑

j=1

1
[
µj
(
`−1
AX

(j)
)

= 1
]

exp
[
−K

(
µj,PY |X

)]
)]

= log

[
PX

(
k∑

j=1

1
[
µj
(
`?X
−1(j)

)
= 1
]

exp
[
−K

(
µj,PY |X

)]
)]

≤ sup
`

log

[
PX

(
k∑

j=1

1
[
µj
(
`−1
X (j)

)
= 1
]

exp
[
−K

(
µj,PY |X

)]
)]

.

This proves that

inf
{
K
(
QX,Y ,PX,Y

)
: QX,Y satisfies (3.8) for some `

}

= − log

[
PX

(
sup
A∈T

{∑

j∈A

K
(
µj,PY |X

)
})]

.

To prove identity (3.10), it is enough to remark that
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K
(
ρW ,PX |Y,W

)
= ρW

[
log

(
dρW

dPX |Y,W

)]

= ρW

[
log

(
dρW

dPX |W

)]
− ρW

[
log

(
dPX |Y,W
dPX |W

)]

= ρW

[
log

(
dρW

dPX |W

)]
− ρW

[
log

(
dPY |X,W
dPY |W

)]
.

�

3.3. Signal fragmentation

Consider a random signalX : Ω→ Rd. Let us assume that S : Ω→ J1, dK and V : Ω→ R

are such that

PS, V |X = PS |X N
(
XS, σ

2
)
,

where supp
(
PS |X

)
= J1, dK and where σ is a positive real parameter. Note that X is a

function of PS, V |X , given by the identity

Xs = PV |X,S=s (V ), 1 ≤ s ≤ d.

In other words, PS, V |X is a lossless representation of the signal X. This representation is not

unique, since we can choose the smoothing parameter σ and the site distribution PS |X as

we please to represent the same X. Usually we will take PS |X to be the uniform probability

measure on J1, dK, this choice being independent from X.

We are looking for labelsW = `(X,S) ∈ J1, kK and for a probability measureQ ∈M1
+

(
Ω
)

such that QX,S, V |W = QX |W QS, V |W , QW almost surely, minimizing

K
(
QX,S, V ,PX,S, V

)
.

The process QX,S, V can be understood as a patch process approximating PX,S, V . Indeed,

QS, V |X = QW |X
(
QS, V |W

)
,

meaning that the signal QS, V |X is a mixture of the k patches QS, V |W=j, 1 ≤ j ≤ k.

Proposition 16 (Generalized k-means algorithm) Consider k centers ρj ∈M1
+

(
Rd
)
,

1 ≤ j ≤ k. Define

T2 =
{
B ⊂ J1, kK : ρi ⊥ ρj, i 6= j ∈ B

}
,

the set of tilings by mutually singular probability measures ρj. The partial minimum

inf
Q

K
(
QX,S, V ,PX,S, V

)

taken on all probability measures Q, such that for some measurable function ` : Rd×J1, dK→
J1, kK

Q
[
QX |S, V, `(X,S) = ρ`(X,S)

]
= 1. (3.11)
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is equal to

− sup
`

logPS

(
k∑

j=1

1
[
ρj
(
`−1
S (j)

)
= 1
]

exp
[
−K

(
ρj,PX |S

)
−Varρj

(
XS

)
/(2σ2)

])

= − logPS

(
sup
B∈T2

∑

j∈B

exp
[
−K

(
ρj,PX |S

)
−Varρj

(
XS

)
/(2σ2)

])
,

where

`s : Rd → J1, kK

x 7→ `(x, s).

For any choice of `, and in particular for the optimal one, putting W = `(X,S), the optimum

in QW,S, V is reached when

dQW,S, V

dPW,S ⊗ λV
= Z−1 exp

[
−K

(
ρW ,PX |W,S

)
−VarρW

(
XS

)
/(2σ2)

]
gσ, ρW (XS)(V ), (3.12)

where λV is the Lebesgue measure on R and

gσ,m(v) =
1

σ
√

2π
exp

(
− (v −m)2

2σ2

)
.

In particular, for the optimal choice of QW,S, V , QV |S,W = N
(
ρW (XS), σ2

)
is a Gaussian

probability measure and

dQS |W

dPS |W
= Z−1

W exp
[
−K

(
ρW ,PX |W,S

)
−VarρW (XS)/(2σ2)

]
.

On the other hand, consider k centers µ
(j)
S, V ∈M1

+

(
J1, dK×R

)
, 1 ≤ j ≤ k such that

µ
(j)
V |S = N

(
µ

(j)
V |S(V ), σ2

)
, 1 ≤ j ≤ k.

Define

T1 =
{
A ⊂ J1, kK : µ

(i)
S ⊥ µ

(j)
S , i 6= j ∈ A

}
,

the set of tilings by mutually singular probability measures µ
(j)
S (or equivalently by mutually

singural probability measures µ
(j)
S, V ).

The partial minimum

inf
Q

K
(
QX,S, V ,PX,S, V

)

taken on all probability measures Q ∈ M1
+

(
Ω
)

such that, for some measurable function

` : Rd × J1, dK→ J1, kK
Q
[
QS, V |X, `(X,S) = µ

(`(X,S))
S, V

]
= 1, (3.13)

is equal to
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− sup
`

logPX

(
k∑

j=1

1
[
µ

(j)
S

(
`−1
X (j)

)
= 1
]

× exp
{
−K

(
µ

(j)
S ,PS |X

)
− µ(j)

S

[(
µ

(j)
V |S(V )−XS

)2

/(2σ2)
]})

= − logPX

(
sup
A∈T1

∑

j∈A

exp
{
−K

(
µ

(j)
S ,PS |X

)
− µ(j)

S

[(
µ

(j)
V |S(V )−XS

)2

/(2σ2)
]})

,

where

`x : J1, dK→ J1, kK

s 7→ `(x, s).

For any value of `, and in particular for the optimal one, considering W = `(X, S), the

minimum in QX,W is reached when

dQX,W

dPX,W
= Z−1 exp

{
−K

(
µ

(W )
S ,PS |X,W

)
− µ(W )

S

[(
µ

(W )
V |S(V )−XS

)2

/(2σ2)
]}
. (3.14)

Alternating these two partial optimization steps, we can converge to a local minimum for the

optimization problem

inf
Q

K
(
QX,S, V ,PX,S, V

)
,

where the infimum is taken over probability measures Q ∈ M1
+

(
Ω
)

satisfying, for some

measurable classification function ` : Rd × J1, dK→ J1, kK,

Q
[
QX,S, V | `(X,S) = QX | `(X,S) ⊗QS, V | `(X,S)

]
= 1. (3.15)

Proof. Assume for the time being that the classification function ` is fixed and note that

QX |S, V, `(X,S)=j = QX |S, V,X∈`−1
S (j).

Let us set

QX |S, V, `(X,S)=j = ρj

whenever ρj
(
`−1
S (j)

)
= 1 and give it any arbitrary value otherwise. Set W = `(X,S) and

define QS, V,W by equation (B.4) on page 145. This defines QX,S, V . Condition (B.3) on page

145 is satisfied. Indeed,

dQW |S

dPW |S
= Z−1

S exp
[
−K

(
ρW ,PX |W,S

)
−VarρW (XS)/(2σ2)

]
.

Remark that

PX |S,W=j = PX |S,X∈`−1
S (j),

so that PX |S,W=j

(
`−1
S (j)

)
= 1. Therefore, when ρj

(
`−1
S (j)

)
< 1, ρj is not absolutely contin-

uous with respect to PX |S,W=j, K
(
ρj,PX |S,W=j

)
= +∞ and QW |S(j) = 0 = Q

(
`(X, S) =
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j |S
)
. Thus ρW

(
`−1
S (W )

)
= 1, Q almost surely, and therefore QX |S, V, `(X,S) = ρ`(X,S), Q

almost surely, as required by condition (B.3) on page 145.

Let us prove that

dQS, V W

dPS, V,W
= Z−1 exp

[
−K

(
ρW , PX |S, V,W

)]
. (3.16)

Remark that

K
(
ρW ,PX |W,S, V

)
= K

(
ρW ,PX |W,S

)
− ρW

[
log

(
dPX |W,S, V
dPX |W,S

)]

= K
(
ρW ,PX |W,S

)
− ρW

[
log

(
dPV |X,W,S,
dPV |W,S

)]

= K
(
ρW ,PX |W,S

)
− ρW

[
log

(
dPV |X,S,
dPV |W,S

)]
, ( since W = `(X,S) ).

Hence

exp
[
−K

(
ρW ,PX |S, V,W

)]

= exp

{
−K

(
ρW ,PX |W,S

)
+ ρW

[
log

(
dPV |X,S

dλV

)]}
dλV

dPV |W,S

=
dλV

dPV |W,S
exp
[
−K

(
ρW , PX |W,S

)
− ρW

[
(V −XS)2

]
/(2σ2)− log

(
σ
√

2π
)]

=
dλV

dPV |W,S
exp
[
−K

(
ρW , PX |W,S

)
−VarρW (XS)/(2σ2)

]
× 1

σ
√

2π
exp

[
−(V − ρW (XS))2

2σ2

]

=
dλV

dPV |W,S
exp
[
−K

(
ρW , PX |W,S

)
−VarρW (XS)/(2σ2)

]
gσ, ρW (XS)(V ). (3.17)

Thus, from the definition of QS, V,W ,

dQW,S, V

dPW,S ⊗ λV
= Z−1 dPV |W,S

dλV
exp
[
−K

(
ρW ,PX |S, V,W

)]
,

proving (3.16).

According to the decomposition formula for the divergence (Lemma 1 on page 9), for any

probability measure Q′X,S, V satisfying condition (B.3) on page 145, for the same classification

function ` as Q,

K
(
Q′S, V,X ,PS, V,X

)
= K

(
Q′S, V,W ,PS, V,W

)
+Q′S, V,W

[
K
(
ρW ,PX |S, V,W

)]
,

so that from Lemma 6 on page 41 and from (3.16),

inf
Q′S, V,W

K
(
Q′S, V,X ,PS, V,X

)
= − log

{
PS, V,W

[
exp
[
−K

(
ρW ,PX |S, V,W

)]
]}
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is reached when Q′X,S, V = QX,S, V . Moreover, from (3.17),

PV |S,W

[
exp
[
−K

(
ρW ,PX |S, V,W

)]]
= exp

[
−K

(
ρW ,PX |S,W

)
−VarρW

(
XS

)
/(2σ2)

]
.

Thus

inf
Q′S, V,X

K
(
Q′S, V,X ,PS,,V,X

)
= − logPS,W

[
exp
(
−K

(
ρW ,PX |S,W

)
−VarρW (XS)/(2σ2)

)]

= − logPS

(
k∑

j=1

PW |S(j) exp
[
−K

(
ρj,PX |S,W=j

)
−Varρj(XS)/(2σ2)

])
.

Remark now that whenever PW |S(j) > 0,

K
(
ρj,PX |S,W=j

)
= K

(
ρj,PX |S

)
− ρj

[
log

(
dPX |S,W=j

dPX |S

)]

= K
(
ρj,PX |S

)
− ρj

[
log

(
PW |X,S(j)

PW |S(j)

)]
,

so that

exp
[
−K

(
ρj,PX |S,W=j

)]
=
1
[
ρj
(
`−1
S (j)

)
= 1
]

PW |S(j)
exp
[
−K

(
ρj,PX |S

)]

Therefore,

inf
Q′S, V,X

K
(
Q′S, V,X ,PS, V,X

)

= − logPS

(
k∑

j=1

1
[
PW |S(j) > 0

]
1
[
ρj
(
`−1
S (j)

)
= 1
]

× exp
[
−K

(
ρj,PX |S

)
−Varρj

(
XS

)
/(2σ2)

])

= − logPS

(
k∑

j=1

1
[
ρj
(
`−1
S (j)

)
= 1
]

exp
[
−K

(
ρj,PX |S

)
−Varρj

(
XS

)
/(2σ2)

])
,

because PW |S(j) = PX |S
(
`−1
S (j)

)
> 0 when ρj

(
`−1
S (j)

)
= 1 and K

(
ρj,PX |S

)
< ∞ and

consequently ρj � PX |S.

Reasoning as in the proof of Proposition 15 on page 52, we conclude that

inf
`

inf
Q′S, V,X

K
(
Q′S, V,X , PS, V,X

)

= − sup
`

logPS

(
k∑

j=1

1
[
ρj
(
`−1
S (j)

)
= 1
]

exp
[
−K

(
ρj,PX |S

)
−Varρj

(
XS

)
/(2σ2)

])

= − logPS

(
sup
B∈T2

∑

j∈B

exp
[
−K

(
ρj,PX |S

)
−Varρj

(
XS

)]
)
.
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The proof of the second half of the proposition is in the same spirit. We construct an

optimal solution for a given classification function ` setting

QS, V |X, `(X,S)=j = µ
(j)
S, V

when µ
(j)
S

(
`−1
X (j)

)
= 1, and any value otherwise. We complete the defintion of QX,S, V defin-

ing QX,W as in equation (B.6) on page 146. We then remark that PS |X,W=j = PS |X,S∈`−1
X (j),

so that when µ
(j)
S

(
`−1
X (j)

)
< 1, K

(
µ

(j)
S ,PS |X,W=j

)
= +∞, implying that

QX,S

[
µ

(`(X,S))
S

(
`−1
X

(
`(X, S)

)
= 1
]

= 1,

and therefore condition (3.13) on page 57 is satisfied. Let us prove now that

dQX,W

dPX,W
= Z−1 exp

[
−K

(
µ

(W )
S, V ,PS, V |X,W

)]
. (3.18)

Indeed,

K
(
µ

(W )
S, V ,PS, V |X,W

)
= K

(
µ

(W )
S ,PS |X,W

)
+ µ

(W )
S

[
K
(
µ

(W )
V |S,PV |S,X,W

)]

= K
(
µ

(W )
S ,PS |X,W

)
+ µ

(W )
S

[
K
(
µ

(W )
V |S,PV |S,X

)]
, (since W = `(X,S))

= K
(
µ

(W )
S ,PS |X,W

)
+ µ

(W )
S

[(
µ

(W )
V |S(V )−XS

)2
/(2σ2)

]
.

From the decompostion property of the divergence,

K
(
Q′X,S, V ,PX,S, V

)
= K

(
Q′X,S, V,W ,PX,S, V,W

)

= K
(
Q′X,W ,PX,W

)
+Q′X,W

[
K
(
Q′S, V |X,W ,PS, V |X,W

)]

= K
(
Q′X,W ,PX,W

)
+Q′X,W

[
K
(
µ

(W )
S, V ,PS, V |X,W

)]
,

so that according to equation (3.18) and Lemma 6 on page 41, Q is optimal for ` fixed, and

inf
Q′

K
(
Q′X,S, V ,PX,S, V

)
= − logPX,W

[
exp
[
−K

(
µ

(W )
S, V ,PS, V |X,W

)]]

= − logPX,W

[
exp
{
−K

(
µ

(W )
S ,PS |X,W

)
− µ(W )

S

[(
µ

(W )
V |S(V )−XS

)2
/(2σ2)

]}]

= − logPX

(
k∑

j=1

1
[
µ

(j)
S

(
`−1
X (j)

)
= 1
]

exp
{
−K

(
µ

(j)
S ,PS |X

)
−µ(j)

S

[(
µ

(j)
V |S(V )−XS

)2
/(2σ2)

]})
,

where the last identity is proved as in the case of the first half of the proposition. As in the

proof of Proposition 15 on page 52, we conclude that

inf
`

inf
Q′

K
(
Q′X,S, V ,PX,S, V

)

= − logPX

(
sup
A∈T1

∑

j∈A

exp
{
−K

(
µ

(j)
S ,PS |X

)
− µ(j)

S

[(
µ

(j)
V |S(V )−XS

)2
/(2σ2)

]})
.

�
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CHAPTER 4

PAC-Bayesian bounds for information k-means and

information fragmentation

4.1. A PAC-Bayesian bound for information k-means

In this section, we consider the setting described in Section 3.1 on page 39, and more

specifically in Proposition 13 on page 48.

We first derive a non-asymptotic dimension free bound for the representation of the

problem in the separable Hilbert space H. Then, we translate this result to the case of the

original information k-means risk.

Our proofs are based on the following PAC-Bayesian lemma.

Lemma 17 Consider two measurable spaces T and W, a prior probability measure π ∈
M1

+(T) defined on T, and a measurable function h : T×W→ R. Let W ∈W be a random

variable and let (W1, . . . ,Wn) be a sample made of n independent copies of W . Let λ be a

positive real parameter.

PW1, ...,Wn

{
exp

[
sup

ρ∈M1
+(T)

sup
η∈N

{ ∫
min

{
η, −λ

n∑

i=1

h(θ′,Wi)

− n log
[
PW exp

[
−λh(θ′,W )

]]}
dρ(θ′)−K(ρ, π)

}]}
≤ 1. (4.1)

Consequently, for any δ ∈]0, 1[, with probability at least 1− δ,

sup
ρ∈M1

+(T)

sup
η∈N

{ ∫
min

{
η, −λ

n∑

i=1

h(θ′,Wi)

− n log
[
PW exp

[
−λh(θ′,W )

]]}
dρ(θ′)−K(ρ, π)

}
≤ log(δ−1). (4.2)

Note that the role of η in this formula is to give a meaning to the integration with respect

to ρ in all circumstances.
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Proof. We follow here the same arguments as in the proof of Proposition 1.7 in [Giu15].

Remark that the supremum in ρ can be restricted to the case when K(ρ, π) <∞, and recall

that in this case ρ� π and K(ρ, π) =

∫
log

(
dρ

dπ
(θ′)

)
dρ(θ′). Note also that

∫
1
(dρ

dπ
(θ′) > 0

)
dρ(θ′) =

∫
1
(dρ

dπ
(θ′) > 0

)dρ

dπ
(θ′) dπ(θ′) =

∫
dρ

dπ
(θ′) dπ(θ′) = 1.

Applying Jensen’s inequality, we get

exp

{
sup

ρ∈M1
+(T)

sup
η∈N

∫
min

{
η, −λ

n∑

i=1

h(θ′,Wi)

− n log
[
PW exp

[
−λh(θ′,W )

]]}
dρ(θ′)−K(ρ, π)

}

≤ sup
η∈N

sup
ρ∈M1

+(T)

K(ρ,π)<∞

∫
exp

{
min

{
η, −λ

n∑

i=1

h(θ′,Wi)

− n log
[
PW exp

[
−λh(θ′,W )

]]}
}

dρ

dπ
(θ′)−1 dρ(θ′)

= sup
η∈N

sup
ρ∈M1

+(T)

K(ρ,π)<∞

∫
exp

{
min

{
η,

− λ
n∑

i=1

h(θ′,Wi)− n log
[
PW exp

[
−λh(θ′,W )

]]}
}
1

(
dρ

dπ
(θ′) > 0

)
dπ(θ′)

≤ sup
η∈N

∫
exp

{
min

{
η, −λ

n∑

i=1

h(θ′,Wi)− n log
[
PW exp

[
−λh(θ′,W )

]]}
dπ(θ′)

=
monotone

convergence

∫
exp

{
−λ

n∑

i=1

h(θ′,Wi)− n log
[
PW exp

[
−λh(θ′,W )

]]
}

dπ(θ′).

Let us put

Y ′ = sup
ρ∈M1

+(T)

sup
η∈N

{ ∫
min

{
η, −λ

n∑

i=1

h(θ′,Wi)

− n log
[
PW exp

[
−λh(θ′,W )

]]}
dρ(θ′)−K(ρ, π)

}
and

Y = log

∫
exp

{
−λ

n∑

i=1

h(θ′,Wi)− n log
[
PW exp

[
−λh(θ′,W )

]]
}

dπ(θ′).

We just proved that Y ′ ≤ Y . Moreover, Y is measurable, according to Fubini’s theorem for

non-negative functions. Therefore Y is a random variable. Note that we did not prove that

Y ′ itself is measurable. Remark now that

PW1, ... ,Wn

[
exp(Y )

]
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= PW1, ... ,Wn

∫
exp

{
−λ

n∑

i=1

h(θ′,Wi)− n log
[
PW exp

[
−λh(θ′,W )

]]
}

dπ(θ′),

=
Fubini

∫
PW1, ... ,Wn exp

{
−λ

n∑

i=1

h(θ′,Wi)− n log
[
PW exp

[
−λh(θ′,W )

]]
}

dπ(θ′)

=

∫ 
1
(
PW

[
exp
(
−λh(θ′,W )

)]
< +∞

) n∏

i=1

PWi

[
exp
(
−λh(θ′,Wi)

)]

PW

[
exp
(
−λh(θ′,W )

)]


 dπ(θ′) ≤ 1,

proving the first part of the lemma. From Markov’s inequality,

P
(
Y ≥ log(δ−1)

)
≤ δPW1, ... ,Wn

[
exp(Y )

]
≤ δ.

Consequently P
(
Y ≤ log(δ−1)

)
≥ 1−δ. We have proved that the non necessarily measurable

event Y ′ ≤ log(δ−1) contains the measurable event Y ≤ log(δ−1) whose probability is at least

1− δ. �

Lemma 18 Let W be a bounded random vector in a separable Hilbert space H. Let Θ ⊂ H

be a bounded set of parameters. Define ‖Θ‖ = sup
{
‖θ‖ : θ ∈ Θ

}
and ‖W‖∞ = ess sup‖W‖.

Assume that

P
(

inf
θ∈Θ
〈θ,W 〉 ≥ 0

)
= 1. (4.3)

Let W1, . . . ,Wn be a statistical sample made of n independent copies of W . Consider

any number of centers k ≥ 2, any sample size n ≥ 8k/ log(k) and any probability level

δ ≥ exp
(
−n log(k)). With probability at least 1− δ, for any θ ∈ Θk,

PW

(
min
j∈J1,kK

〈θj,W 〉
)
≤ PW

(
min
j∈J1,kK

〈θj,W 〉
)

+

(√
log(δ−1)

2n
+

(
8k log(k)

n

)1/4
)
‖Θ‖ ‖W‖∞,

where PW =
1

n

n∑

i=1

δWi
is the empirical measure of the sample. In expectation

PW1, ... ,Wn

[
sup
θ∈Θk

(
PW

(
min
j∈J1, kK

〈θj,W 〉
)
−PW

(
min
j∈J1, kK

〈θj,W 〉
))]

≤
(

8k log(k)

n

)1/4

‖Θ‖ ‖W‖∞,

Note that condition (4.3) is not essential. Its role is only to provide slightly better constants.

Proof. Let Φ : H → `2 ⊂ RN be an isometry (obtained by considering an orthonormal

basis ofH). Let us consider an infinite sequence of normal random variables ε ∼ N(0, 1)⊗N ∈
M1

+

(
RN
)
, independent from the random variable X, and therefore from W . For any two

random variables U, V : Ω→ RN, let us define the following extension of the inner product

〈U, V 〉 =





lim
s→∞

s∑

t=0

UtVt, when lim sup
s→∞

s∑

t=0

UtVt = lim inf
s→∞

s∑

t=0

UtVt ∈ R,

0, otherwise.

(4.4)
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Note that the fact that U and V are measurable implies that 〈U, V 〉 : Ω→ R is measurable.

Remark nonetheless that this extension of the inner product is not bilinear, due to the intro-

duction of a condition depending on the existence of the limit. Note that our construction

is related to the Gaussian process

G(f, g) = 〈Φ(f) + β−1/2ε, Φ(g)〉, (f, g) ∈ H2. (4.5)

For any θ ∈ H, introduce ρθ = PΦ(θ)+β−1/2ε ∈ M1
+

(
RN
)
, and put, for any θ ∈ Hk, ρθ =

⊗k
j=1 ρθj ∈M1

+

((
RN
)k)

. Note that for any θ, θ̃ ∈ H,

K
(
ρθ, ρθ̃

)
=
∑

i∈N

K
(
PΦ(θ)i+β−1/2εi ,PΦ(θ̃)i+β−1/2εi

)
=
∑

i∈N

β

2

[
Φ(θ)i − Φ(θ̃)i

]2
=
β‖θ − θ̃‖2

2
.

In the same way, for any θ, θ̃ ∈ Hk,

K
(
ρθ, ρθ̃

)
=
β

2

k∑

j=1

‖θj − θ̃j‖2 =
β

2
‖θ − θ̃‖2.

We will use a PAC-Bayesian inequality deduced from Lemma 17 on page 63 to be stated

later. It requires to upper bound the following expressions, that can be seen as perturbations

of exponential moments :

M(θ, λ) =

∫
logPW

[
exp
(
−λ min

j∈J1,kK
〈θ′j,Φ(W )〉

)]
dρθ(θ

′), θ ∈ Θk, λ > 0.

Note that M(θ, λ) being the expectation with respect to ρθ of a non positive random vari-

able is always well defined in R− ∪ {−∞}. We can use Jensen’s inequality to move the

perturbation inside the logarithm, and Fubini’s theorem for non-negative functions, to move

it inside the expectation, obtaining

M(θ, λ) ≤ logPW

[∫
exp
(
−λ min

j∈J1,kK
〈θ′j,Φ(W )〉

)
dρθ(θ

′)

]
.

We can then linearize the minimum in j, remarking that

exp
(
−λ min

j∈J1,kK
〈θ′j,Φ(W )〉

)
≤ inf

α≥1

( k∑

j=1

exp
(
−αλ〈θ′j,Φ(W )〉

))1/α

.

Note that

ρθ ◦
(
θ′j 7→ 〈θ′j,Φ(W )〉

)−1
= N

(
〈θj,W 〉, ‖W‖2/β

)
,

meaning that under the probability measure dρθ(θ
′), the random variable 〈θ′j,Φ(W )〉 (where

we use the extension of the scalar product) is a scalar Gaussian random variable with mean

〈θj,W 〉 (where we use the scalar product in H) and variance ‖W‖2/β. Using Jensen’s

inequality again and the formula giving the Laplace transform of a Gaussian measure, we

deduce that
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M(θ, λ) ≤ logPW

[
inf
α≥1

( k∑

j=1

∫
exp
(
−αλ〈θ′j,Φ(W )〉

)
dρθ(θ

′)

)1/α]

= logPW

[
inf
α≥1

( k∑

j=1

exp
(
−αλ〈θj,W 〉+

α2λ2

2β
‖W‖2

))1/α]

≤ logPW exp

(
−λ min

j∈J1,kK
〈θj,W 〉+ inf

α≥1

αλ2

2β
‖W‖2 +

log(k)

α

)

≤ logPW exp

(
−λ min

j∈J1,kK
〈θj,W 〉+ λ

√
2 log(k)

β
‖W‖

)

≤ λ

√
2 log(k)

β
‖W‖∞ + logPW exp

(
−λ min

j∈J1,kK
〈θj,W 〉

)
,

under the condition that α2 =
2β log(k)

λ2‖W‖2
≥ 1 almost surely, that is

λ2 ‖W‖2
∞ ≤ 2β log(k). (4.6)

Notice that

PW

(
−λ min

j∈J1,kK
〈θj,W 〉 ∈

[
−λ‖Θ‖ ‖W‖∞, 0

])
= 1.

Therefore, according to Hoeffding’s lemma,

logPW exp
(
−λ min

j∈J1,kK
〈θj,W 〉

)
≤ −λPW

(
min
j∈J1,kK

〈θj,W 〉
)

+
λ2

8
‖Θ‖2 ‖W‖2

∞.

Indeed, for any measurable function f such that P
(
a ≤ f(W ) ≤ b

)
= 1, a Taylor expansion

with integral remainder of u 7→ logPW

(
exp
(
uf(W )

))
between 0 and 1 gives

logPW

(
exp
(
f(W )

))
= PW

(
f(W )

)
+

∫ 1

0

(1− u) Varu
(
f(W )

)
du,

where, putting

PW |u

(
h(W )

)
=
PW

(
exp
[
uf(W )

]
h(W )

)

PW

(
exp
[
uf(W )

]) ,

Varu
(
f(W )

)
= PW |u

[(
f(W )−PW |uf(W )

)2]
≤ PW |u

[(
f(W )− (a+ b)/2

)2]
≤ (b− a)2

4
.

We refer to [Cat14] for more details concerning the proof of Hoeffding’s lemma and related

bounds. We get

M(θ, λ) ≤ −λPW
(

min
j∈J1,kK

〈θj,W 〉
)

+
λ2

8
‖Θ‖2 ‖W‖2

∞ + λ

√
2 log(k)

β
‖W‖∞. (4.7)

Let us apply the PAC-Bayesian inequality of Lemma 17 on page 63 to our problem. Choose

π = ρθ̃ for some deterministic value θ̃ of the parameter (that we will set equal to zero later).

We obtain that with probability at least 1− δ,
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sup
θ∈ΘkB

sup
η∈N

∫
min

{
η, −λ

n∑

i=1

min
j∈J1,kK

〈θ′j,Φ(Wi)〉

− n log
{
PW

[
exp
(
−λ min

j∈J1,kK
〈θ′j,Φ(W )〉

)]}}
dρθ(θ

′)− β

2
‖θ − θ̃‖2 ≤ log(δ−1).

When θ′ is distributed according to ρθ,
(
〈θ′j,Φ(Wi)〉, j ∈ J1, kK

)
∼

k⊗

j=1

N
(
〈θj,Wi〉, β−1‖Wi‖2

)

is a Gaussian vector in Rk with independent components and it is elementary from this re-

mark to check that min
j∈J1,kK

〈θ′j,Φ(Wi)〉 is integrable with respect to ρθ, for any (fixed) value of

Wi ∈ H. Therefore, from what we proved already the negative part of

−λ
n∑

i=1

min
j∈J1,kK

〈θ′j,Φ(Wi)〉 − n log
{
PW

[
exp
(
−λ min

j∈J1,kK
〈θ′j,Φ(W )〉

)]}

is integrable with respect to ρθ, so that the integral of this expression with respect to ρθ is

well defined in R ∪ {+∞} and the monotone convergence theorem applied to its positive

part ensures that

sup
η∈N

∫
min

{
η, −λ

n∑

i=1

min
j∈J1,kK

〈θ′j,Φ(Wi)〉−n log
{
PW

[
exp
(
−λ min

j∈J1,kK
〈θ′j,Φ(W )〉

)]}}
dρθ(θ

′)

=

∫ {
−λ

n∑

i=1

min
j∈J1,kK

〈θ′j,Φ(Wi)〉 − n log
{
PW

[
exp
(
−λ min

j∈J1,kK
〈θ′j,Φ(W )〉

)]}}
dρθ(θ

′)

= −λ
n∑

i=1

∫
min
j∈J1,kK

〈θ′j,Φ(Wi)〉 dρθ(θ′)− n
∫

log
{
PW

[
exp
(
−λ min

j∈J1,kK
〈θ′j,Φ(W )〉

)]}
dρθ(θ

′)

≥ −λ
n∑

i=1

min
j∈J1,kK

∫
〈θ′j,Φ(Wi)〉 dρθ(θ′)− n

∫
log
{
PW

[
exp
(
−λ min

j∈J1,kK
〈θ′j,Φ(W )〉

)]}
dρθ(θ

′)

= −λ
n∑

i=1

min
j∈J1,kK

〈θj,Wi〉 − n
∫

log
{
PW

[
exp
(
−λ min

j∈J1,kK
〈θ′j,Φ(W )〉

)]}
dρθ(θ

′)

︸ ︷︷ ︸
= M(θ, λ)

.

Thus, combining the upper bound (4.7) on page 67 with Lemma 17 on page 63, we get with

probability at least 1− δ, for any θ ∈ Θk,

PW

(
min
j∈J1,kK

〈θj,W 〉
)
≤ 1

n

n∑

i=1

min
j∈J1,kK

〈θj,Wi〉

+
λ

8
‖Θ‖2 ‖W‖2

∞ +

√
2 log(k)

β
‖W‖∞ +

β‖θ − θ̃‖2 + 2 log(δ−1)

2nλ
.

Choose θ̃ = 0. We obtain, with probability at least 1− δ, for any θ ∈ Θk,

PW

(
min
j∈J1,kK

〈θj,W 〉
)
− 1

n

n∑

i=1

min
j∈J1,kK

〈θj,Wi〉
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≤ λ

8
‖Θ‖2‖W‖2

∞ +

√
2 log(k)

β
‖W‖∞ +

kβ‖Θ‖2 + 2 log(δ−1)

2nλ

≤
√

1

4n

(
kβ‖Θ‖2 + 2 log(δ−1)

)
‖Θ‖ ‖W‖∞ +

√
2 log(k)

β
‖W‖∞

≤
(√

log(δ−1)

2n
+

√
kβ‖Θ‖2

4n

)
‖Θ‖‖W‖∞ +

√
2 log(k)

β
‖W‖∞

≤

(√
log(δ−1)

2n
+

(
8k log(k)

n

)1/4
)
‖Θ‖‖W‖∞,

where we have taken

β =

√
8n log(k)

k
‖Θ‖−2,

and λ = 2

√
kβ‖Θ‖2 + 2 log(δ−1)

n
‖Θ‖−1‖W‖−1

∞

= 2

√√
8k log(k)

n
+

2 log(δ−1)

n
‖Θ‖−1‖W‖−1

∞ .

Our computations require condition (4.6) on page 67 that translates as

√
2k log(k)

n
+

log(δ−1)

n
≤ log(k)

√
n log(k)

2k

⇐⇒ δ ≥ exp

[
−n log(k)

√
n log(k)

2k

(
1− 2k

n log(k)

)]
.

The condition is for example satisfied when k ≥ 2, n ≥ 8k/ log(k) and δ ≥ exp
(
−n log(k)

)
.

�

Lemma 19 Let W be a bounded random vector in a separable Hilbert space H. Let Θ ⊂ H

be a bounded set of parameters. Define ‖Θ‖ = sup
{
‖θ‖ : θ ∈ Θ

}
and ‖W‖∞ = ess sup‖W‖.

Let W1, . . . ,Wn be a statistical sample made of n independent copies of W . Consider any

number k ≥ 2 of centers, any sample size n ≥ 2k/ log(k) and any probability level δ ≥
exp(−n log(k)).

Let PW be the expectation with respect to the empirical measure
1

n

n∑

i=1

δWi
.

With probability at least 1− δ, for any θ ∈ Θk,

PW

(
min
j∈J1,kK

〈θj,W 〉
)
− inf

θ∈Θk
PW

(
min
j∈J1,kK

〈θj,W 〉
)

≤ PW
(

min
j∈J1,kK

〈θj,W 〉
)
− inf

θ∈Θk
PW

(
min
j∈J1,kK

〈θj,W 〉
)

+

(√
2 log(δ−1)

n
+

(
32 k log(k)

n

)1/4
)
‖Θ‖ ‖W‖∞.
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Consequently, if

θ̂(W1, . . . ,Wn) ∈ arg min
θ∈Θk

PW

(
min
j∈J1,kK

〈θj,W 〉
)

is an empirical minimizer, with probability at least 1− δ,

PW

(
min
j∈J1,kK

〈θ̂j,W 〉
∣∣W1, . . . ,Wn

)
≤ inf

θ∈Θk
PW

(
min
j∈J1,kK

〈θj,W 〉
)

+

(√
2 log(δ−1)

n
+ 2

(
2k log(k)

n

)1/4
)
‖Θ‖ ‖W‖∞.

Proof. In this proof, we will bound

(
PW − PW

)(
min
j∈J1,kK

〈θj,W 〉 − min
j∈J1,kK

〈θ∗j ,W 〉
)
,

where PW is the expectation with respect to the empirical measure
1

n

n∑

i=1

δWi
, and where

θ∗j ∈ arg min
θ∈Θ

k
PW

(
min
j∈J1,kK

〈θj,W 〉
)
,

where Θ is the weak closure of Θ. We will use the same line of proof as in the case of the

previous proposition. With the same notation, we need to bound the quantities

M(θ, λ) =

∫
logPW

[
exp
(
λ
(

min
j∈J1,kK

〈θ∗j ,W 〉 − min
j∈J1,kK

〈θ′j,Φ(W )〉
))]

dρθ(θ
′), θ ∈ Θk, λ > 0.

Acting exactly as in the previous proof, we get that

M(θ, λ) ≤ logPW exp

(
λ
(

min
j∈J1,kK

〈θ∗j ,W 〉 − min
j∈J1,kK

〈θj,W 〉
)

+ λ

√
2 log(k)

β
‖W‖

)

≤ λ

√
2 log(k)

β
‖W‖∞ + logPW exp

(
λ
(

min
j∈J1,kK

〈θ∗j ,W 〉 − min
j∈J1,kK

〈θj,W 〉
))

.

under condition (4.6) on page 67. Remark that PW almost surely

−‖Θ‖ ‖W‖∞ ≤ λ
(

min
j∈J1,kK

〈θ∗j ,W 〉 − min
j∈J1,kK

〈θj,W 〉
)
≤ ‖Θ‖ ‖W‖∞.

Apply Hoeffding’s inequality to deduce that

M(θ, λ) ≤ λPW

(
min
j∈J1,kK

〈θ∗j ,W 〉 − min
j∈J1,kK

〈θj,W 〉
)

+ λ

√
2 log(k)

β
‖W‖∞ +

λ2

2
‖Θ‖2 ‖W‖2

∞.

Operating in the same way as in the previous proof, we obtain that with probability at least

1− δ for any θ ∈ Θk,

PW

(
min
j∈J1,kK

〈θj,W 〉
)
− PW

(
min
j∈J1,kK

〈θ∗j ,W 〉
)
− PW

(
min
j∈J1,kK

〈θj,W 〉
)

+ PW

(
min
j∈J1,kK

〈θ∗j ,W 〉
)
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≤ λ

2
‖Θ‖2 ‖W‖2

∞ +

√
2 log(k)

β
‖W‖∞ +

β‖θ‖2 + 2 log(δ−1)

2nλ

≤
√
kβ‖Θ‖2 + 2 log(δ−1)

n
‖Θ‖ ‖W‖∞ +

√
2 log(k)

β
‖W‖∞

≤
√

2 log(δ−1)

n
‖Θ‖ ‖W‖∞ +

√
kβ

n
‖Θ‖2‖W‖∞ +

√
2 log(k)

β
‖W‖∞

≤

(√
2 log(δ−1)

n
+ 2

(
2k log(k)

n

)1/4
)
‖Θ‖ ‖W‖∞.

In these inequalities, we have chosen

β =

√
2n log(k)

k
‖Θ‖−2

and λ =

√
kβ‖Θ‖2 + 2 log(δ−1)

n
‖Θ‖−1 ‖W‖−1

∞

=

√√
2k log(k)

n
+

2 log(δ−1)

n
‖Θ‖−1‖W‖−1

∞ .

Condition (4.6) on page 67 reads

√
2k log(k)

n
+

2 log(δ−1)

n
≤ 2 log(k)

√
2n log(k)

k

⇐⇒ δ ≥ exp

(
−n log(k)

(√
2n log(k)

k
−

√
k

2n log(k)

))
.

It is satisfied when k ≥ 2, n ≥ 2k/ log(k) and δ ≥ exp
(
−n log(k)

)
. �

4.1.1. Explicit bound in the information k-means setting. As proved in Lemma 12

on page 47, we can use the previous bounds in the kernel space H to analyze the original

information k-means minimizer.

Proposition 20 Assume that

ess sup
X

(∫
p2
X dν

)
< +∞ and ess sup

X

(∫
log(pX)2 dν

)
< +∞.

Consider the information radius

R = inf
q∈L1

+,1(ν)
ess sup

X
K
(
q, pX

)

and the bounds

B = ess sup
X

(∫
p2
X dν

)1/2

exp(R)
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and C = ess sup
X

(∫
log(pX)2 dν

)1/2

.

Note that R ≤ ess sup
X

K
(
1, pX

)
≤ C.

Introduce the parameter space

QB =
{
q ∈ L1

+,1(ν) ∩ L2(ν) :
∫
q2 dν ≤ B2

}
.

Given (X1, . . . , Xn), a sample made of n independent copies of X, with probability at least

1− δ, for any q ∈ Qk
B,

PX

(
min
j∈J1,kK

K(qj, pX)
)
≤ 1

n

n∑

i=1

min
j∈J1,kK

K(qj, pXi)

+

(√
log(δ−1)

2n
+

(
8k log(k)

n

)1/4)(
BC + 2 log(B)

)
.

Consider an empirical risk minimizer q̂(X1, . . . , Xn) ∈ Qk
B satisfying

q̂ ∈ arg min
q∈QkB

PX

(
min
j∈J1,kK

K
(
qj, pX

))
.

With probability at least 1− δ,

PX

(
min
j∈J1,kK

K
(
q̂, pX

))
≤ inf

q∈
(
L1
+,1(ν)

)k PX
(

min
j∈J1,kK

K
(
qj, pX

))

+

(√
2 log(δ−1)

n
+

(
32 k log(k)

n

)1/4
)(

BC + 2 log(B)
)
.

Proof. The proof consists in applying Lemmas 12 on page 47, 18 on page 65 and 19 on

page 69. Introduce θ =
(
q,K(q, 1)

)
∈ H and W =

(
− log(pX), µ−1

)
∈ H. Let

Θ =
{
θ ∈ H : q ∈ QB

}
.

Remark that

‖W‖2
∞ = ess sup

X
‖log(pX)‖2

ν + µ−1 and that ‖θ‖2 = ‖q‖2
ν + µK(q, 1)2.

According to Jensen’s inequality,

K(q, 1) =

∫
q log(q) dν ≤ log

(∫
q2 dν

)
= log

(
‖q‖2

ν

)
.

Thus ‖Θ‖2
H ≤ B2 + µ log(B2)2. Accordingly

‖Θ‖2‖W‖2
∞ ≤

(
C2 + µ−1

)(
B2 + µ log(B2)2

)

= B2C2 + log(B2)2 + µ−1B2 + µC2 log(B2)2 =
(
BC + 2 log(B)

)2
,

taking µ =
B

C log(B2)
. The proposition then follows from Lemmas 18 on page 65 and 19 on

page 69, in view of Lemma 12 on page 47. �
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4.1.2. Classical k-means quantization in a separable Hilbert space. In this

section, we investigate how to adapt the previous proofs in the case of the classical k-means

risk in order to obtain non-asymptotic dimension-free bounds. Let us consider a separable

Hilbert space (X, ‖.‖). Let (X1, . . . , Xn) be n independent copies of a random vectorX ∼ PX
such that ‖X‖ ≤ B, almost surely with B > 0 and introduce the codebook (or k centers)

µ = (µ1, . . . , µk) ∈ Xk. In this framework, the k-means risk is given by

PX

(
min
j∈J1,kK

‖X − µj‖2
)
,

and its empirical counterpart is

1

n

n∑

i=1

min
j∈J1,kK

‖Xi − µj‖2.

Let us consider the closed ball

B =
{
µ ∈ X : ‖µ‖ ≤ B

}
,

then we have the following lemma

Lemma 21

inf
µ1, ... ,µk∈Xk

PX

(
min
j∈J1,kK

‖X − µj‖2
)

= inf
µ1, ... ,µk∈Bk

PX

(
min
j∈J1,kK

‖X − µj‖2
)
.

Proof. Recall that, for a fixed ` : X→ J1, kK, we have

PX

(∥∥X − µ`(X)

∥∥2
)

= PX

(∥∥X − PX | `(X)(X)
∥∥2
)

+ PX

(∥∥PX | `(X)(X)− µ`(X)

∥∥2
)
.

Thus optimal centers µ?j are given by conditional means PX | `(X)=j(X). Notice that, by

Jensen’s inequality,
∥∥PX | `(X)=j(X)

∥∥ ≤ PX | `(X)=j

(
‖X‖

)
≤ B, since PX

(
‖X‖ ≤ B

)
= 1.

Therefore we can restrict the optimization to the case when µj ∈ B. �

Remark also that

PX

(
min
j∈J1,kK

∥∥X − µj
∥∥2
)

= PX

(
min
j∈J1,kK

‖µj‖2 − 2〈µj, X〉+ ‖X‖2
)
.

In view of this, we can introduce the new separable Hilbert space H = X × R2 endowed

with the inner product

〈h, h′〉H = 2〈h1, h
′
1〉X +B−2h2 h

′
2 +B2h3 h

′
3.

Define

θj = (µj, ‖µj‖2, 1) ∈ Θ ⊂ H

where Θ =
{

(µ, ‖µ‖2, 1) : µ ∈ B
}

and W = (−X,B2, B−2‖X‖2) ∈ H.
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We obtain that 〈θj,W 〉 = ‖X − µj‖2, so that

inf
µ∈Xk

PX

(
min
j∈J1,kK

‖X − µj‖2
)

= inf
θ∈Θk

PX

(
min
j∈J1,kK

〈θj,W 〉
)
,

with 〈θj,W 〉 ≥ 0. Therefore, we are in a situation where we can apply Proposition 18 on

page 65 and Proposition 19 on page 69.

Remark that

‖W‖2 = 2‖X‖2 +B2 +B−2‖X‖4,

‖θ‖ = 2‖µ‖2 +B−2‖µ‖4 +B2,

so that ‖Θ‖ ‖W‖∞ ≤ 4B2.

Proposition 22 Let Xi, 1 ≤ i ≤ n be a sample made of n independent copies of X.

Assume that k ≥ 2, n ≥ 2k log(k) and δ ≥ exp(−n/4). With probability at least 1 − δ, for

any µ =
(
µ1, . . . , µk

)
∈ Bk,

PX

(
min
j∈J1,kK

‖X − µj‖2
)
≤ 1

n

n∑

i=1

min
j∈J1,kK

‖Xi − µj‖2 + 4B2

(√
log(δ−1)

2n
+

(
8k log(k)

n

)1/4
)
.

With probability at least 1− δ, for any µ ∈ Bk,

PX

(
min
j∈J1,kK

∥∥X − µj
∥∥2
)
− inf

µ∈Bk
PX

(
min
j∈J1,kK

∥∥X − µj
∥∥2
)

≤ PX
(

min
j∈J1,kK

∥∥X − µj
∥∥2
)
− inf

µ∈Bk
PX

(
min
j∈J1,kK

∥∥X − µj
∥∥2
)

+ 4B2

(√
2 log(δ−1)

n
+

(
32 k log(k)

n

)1/4
)
,

where PX =
1

n

n∑

i=1

δXi. In particular, if

µ̂(X1, . . . , Xn) ∈ arg min
µ∈Bk

PX

(
min
j∈J1,kK

∥∥X − µj
∥∥2
)
,

with probability at least 1− δ,

PX

(
min
j∈J1,kK

∥∥X − µ̂j
∥∥2
)
≤ inf

µ∈Xk
PX

(
min
j∈J1,kK

∥∥X − µj
∥∥2
)

+ 4B2

(√
2 log(δ−1)

n
+

(
32 k log(k)

n

)1/4
)
.

4.1.3. Discussion about the bounds. We get a bound for the excess risk in the classical

k-means setting, and more generally in the information k-means setting, of order

O

(
log(k)k

n

)1/4

. (4.8)
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Remark that the information k-means setting is a new extension of the classical k-means

setting, where we minimize the Kullback divergence with respect to its first argument. Mini-

mization with respect to the second argument is done instead in [BDG04], within the general

framework of Bregman divergence. Besides, [Fis10] develops the approach of [BDG04] using

Bregman divergence and provides a non asymptotic bound for the excess risk of the same

order as in [BDL08] , that is

O

(
k√
n

)
. (4.9)

Moreover, [BFL20] proves also a deviation bound of the same order as in [BDL08] in the case

of robust k-means with Bregman divergence. However, the dependence in k is not explicit

and depends on a constant based on the characteristics of the underlying data distribution.

We will prove later on faster bounds of order

O

(
log

(
n

k

)√
k log(k)

n

)
. (4.10)

Note that (4.9) goes to zero whenever k2/n goes to zero, whereas (4.10) goes to zero whenever

k log(k) log
(
log(k)

)
/n goes to zero and that (4.8) goes to zero whenever k log(k)/n goes to

zero, so that, although (4.8) is slower than (4.10), it provides a slightly better consistency

condition.

In addition, [Lev13] derives a bound of order

O

(
k3

n

)
,

with a better dependence in n and a worse dependence in k, under margin conditions.

Margin conditions are beyond the scope of the present study, where we focus on the use

of the k-means criterion as a vector quantization tool, a situation where margin conditions

are unlikely to hold true. In this perspective, equation (4.8) is the most significant bound,

although it is the slowest one with respect to n alone, since it provides the best sufficient

condition for consistency (namely that k log(k)/n tends to zero).

4.2. A bounded criterion for information k-means

In this section, we still consider a couple of random variables (X, Y ) : Ω→ X×Y, where

X and Y are two Polish spaces. We assume that for some reference probability measure

ν, P
(
PY |X � ν

)
= 1. Remark that the sigma algebra associated with Y is countably

generated, so that L2(ν) is separable (see prop 3.4.5 in [Coh]). We let pX =
dPY |X

dν
. For

any family of probability densities qj ∈ L1
+,1, 1 ≤ j ≤ k, we consider a classification function

`(X) ∈ arg min
j∈J1,kK

K
(
qj, pX

)

and the model

Qq =
{
Q ∈M1

+(Ω) : QY |X � ν and
dQY |X

dν
= q`(X)

}
.
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Lemma 23 For any family q = (q1, . . . , qk) ∈
(
L1

+,1(ν)
)k

of k centers, define the bounded

criterion

C(q) = 1− exp
[
− inf

Q∈Qq
K
(
QX,Y ,PX,Y

)]
.

It can be expressed as

C(q) = 1− PX
(

exp
[
− min

j∈J1,kK
K
(
qj, pX

)])
.

Proof. Combining Lemma 1 on page 9 and Lemma 6 on page 41, we get

inf
Q∈Qq

K
(
QX,Y ,PX,Y

)
= inf

Q∈Qq

{
K
(
QX , PX

)
+QX

[
K
(
QY |X ,PY |X

)]}

= min
q1,...,qk

{
− logPX

(
exp
[
−K

(
q`(X), pX

)])}
= − logPX

(
exp
[
− min

j∈J1,kK
K
(
qj, pX

)])
.

This completes the proof. �

From the Aronszajn theorem ([Aro50]), there is a mapping Ψ : L2(ν)→ H to a separable

Hilbert space H such that

〈Ψ(f),Ψ(g)〉H = exp

(∫
fg dν

)
, f, g ∈ L2(ν).

Notice that H is separable since K(f, g) = exp

(∫
fg dν

)
is a continuous kernel (see lemma

4.33 in [CS08]). Introduce a positive real parameter µ to be chosen afterwards and remark

that

exp
(
−K

(
qj, pX

))
=
〈

exp
(
−K(qj, 1)

)
Ψ(µ qj), Ψ

(
µ−1 log(pX)

)〉
H

Accordingly, if we let θj = exp
(
−K(qj, 1)

)
Ψ(µ qj) and W = Ψ

(
µ−1 log(pX)

)
, we obtain that

C(q) = 1− PX
(

max
j∈J1,kK

〈θj,W 〉H︸ ︷︷ ︸
∈[0,1]

)
.

To proceed, we need the following lemma in kernel space H.

Lemma 24 Consider a separable Hilbert space H and a random vector W ∈ H. Let

W1, . . . ,Wn be a sample made of n independent copies of W and let Θ ⊂ H be a bounded

set of parameters.

Assume that PW

(
〈θ,W 〉 ∈ [0, 1], θ ∈ Θ

)
= 1.

For any number of centers k ≥ 2, any sample size n ≥ 4k‖Θ‖2‖W‖2
∞/ log(k) and any

probability level δ ≥ exp
(
− log(k)n/

√
2
)
, with probability at least 1− δ, for any θ ∈ Θk,

PW

(
max
j∈J1,kK

〈θj,W 〉
)
≤ PW

(
max
j∈J1,kK

〈θj,W 〉
)

+

√
log(δ−1)

2n
+

(
8k log(k)

n

)1/4

‖Θ‖1/2 ‖W‖1/2
∞ .
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For any number of centers k ≥ 2, any sample size n ≥ k‖Θ‖2‖W‖2
∞/ log(k), any probability

level δ ≥ exp
(
−n log(k)/

√
2
)
, any non random family of centers θ∗ ∈ Θk, with probability

at least 1− δ, for any θ ∈ Θk

(
PW −PW

)(
max
j∈J1,kK

〈θj,W 〉 − max
j∈J1,kK

〈θ∗j ,W 〉
)
≤
√

log(δ−1)

2n
+

(
32 k log(k)

n

)1/4

‖Θ‖1/2‖W‖1/2
∞ .

Consequently if

θ̂(W1, . . . ,Wn) ∈ arg max
θ∈Θk

PW

(
max
j∈J1,kK

〈θj,W 〉
)

with probability at least 1− δ,

sup
θ∈Θk

PW

(
max
j∈J1,kK

〈θj,W 〉
)
≤ PW

(
max
j∈J1,kK

〈θ̂j,W 〉
)

+

√
log(δ−1)

2n
+

(
32 k log(k)

n

)1/4

‖Θ‖1/2‖W‖1/2
∞ .

Proof. The proof is almost the same as the proofs of Propositions 18 on page 65 and 19

on page 69. Reasoning in the same way, we see that

∫
logPW exp

(
λ max
j∈J1,kK

〈θ′j,W 〉
)

dρθ(θ
′) ≤ λ

√
2 log(k)

β
‖W‖∞+logPW exp

(
λ max
j∈J1,kK

〈θj,W 〉︸ ︷︷ ︸
∈[0,1]

)

≤ λ

√
2 log(k)

β
‖W‖∞ + λPW

(
max
j∈J1,kK

〈θj,W 〉
)

+
λ2

8
,

under condition (4.6) on page 67. Remarking that moreover
∫
PW

(
max
j∈J1,kK

〈θ′j,Φ(W )〉
)

dρθ(θ
′) ≥ PW

(
max
j∈J1,kK

〈θj,W 〉
)
,

we deduce that

(
PW − PW

)(
max
j∈J1,kK

〈θj,W 〉
)
≤

√
2 log(k)

β
‖W‖∞ +

λ

8
+
kβ‖Θ‖2 + 2 log(δ−1)

2nλ

≤

√
2 log(k)

β
‖W‖∞ +

√
kβ‖Θ‖2 + 2 log(δ−1)

4n

≤
√

log(δ−1)

2n
+

(
8k log(k)

n

)1/4

‖Θ‖1/2‖W‖1/2
∞ ,

where we have chosen

β =

√
8n log(k)

k
‖Θ‖−1‖W‖∞,

λ = 2

√
kβ‖Θ‖2 + 2 log(δ−1)

n

= 2

√√
8k log(k)

n
‖Θ‖ ‖W‖∞ +

2 log(δ−1)

n
.
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Accordingly condition (4.6) on page 67 reads

√
8k log(k)

n
‖Θ‖ ‖W‖∞ +

2 log(δ−1)

n
≤ 1

2
log(k)

√
8n log(k)

k
‖Θ‖−1‖W‖−1

∞

⇐⇒ δ ≥ exp

(
−n log(k)

√
n log(k)

2k
‖Θ‖−1‖W‖−1

∞

(
1− 2k

n log(k)
‖Θ‖2‖W‖2

∞

))
.

Therefore the condition is satisfied when k ≥ 2, n ≥ 4k‖Θ‖2‖W‖2
∞/ log(k)

and δ ≥ exp
(
−n log(k)/

√
2
)
. This completes the proof of the first part of the lemma. To

prove the second part, remark in the same way that

(
PW − PW

)(
max
j∈J1,kK

〈θj,W 〉 − max
j∈J1,kK

〈θ∗j ,W 〉
︸ ︷︷ ︸

∈[−1,1]

)

≤

√
2 log(k)

β
‖W‖∞ +

λ

2
+
kβ‖Θ‖2 + 2 log(δ−1)

2nλ

≤

√
2 log(k)

β
‖W‖∞ +

√
kβ‖Θ‖2 + 2 log(δ−1)

n

≤
√

2 log(δ−1)

n
+

(
32 k log(k)

n

)1/4

‖Θ‖1/2‖W‖1/2
∞ ,

where we have set

β =

√
2 log(k)n

k
‖W‖∞‖Θ‖−1

and λ =

√
kβ‖Θ‖2 + 2 log(δ−1)

n

=

√√
2k log(k)

n
‖Θ‖ ‖W‖∞ +

2 log(δ−1)

n
.

We have also to satisfy condition (4.6) on page 67 that reads

√
2k log(k)

n
‖Θ‖ ‖W‖∞ +

2 log(δ−1)

n
≤ 2 log(k)

√
2n log(k)

k
‖Θ‖−1‖W‖−1

∞

⇐⇒ δ ≥ exp

(
−n log(k)

√
2n log(k)

k
‖Θ‖−1‖W‖−1

∞

(
1− k

2n log(k)
‖Θ‖2‖W‖2

∞

))
.

It is satisfied when k ≥ 2, n ≥ k‖Θ‖2‖W‖2
∞/ log(k) and δ ≥ exp

(
−n log(k)/

√
2
)
. �

We need now an equivalent of Lemma 12 on page 47 for the bounded criterion defined

in Lemma 23 on page 76.

Lemma 25 Assume that ess supX
∫
p2
X dν < +∞ and ess supX

∫
log(pX)2 dν < +∞. Con-

sider the information radius

R = inf
q∈L1

+,1(ν)
ess sup

X
K(q, pX)
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and the bounds

B = ess sup
X

(∫
p2
X dν

)1/2

exp(R),

C = ess sup
X

(∫
log(pX)2 dν

)1/2

Note that R ≤ ess sup
X

K(1, pX) ≤ C < +∞, so that B < +∞. Consider the set

B =
{
q ∈ L1

+,1(ν) :
∫
q2 dν ≤ B2

}

The minimization of the bounded criterion C(q) defined in Lemma 23 on page 76 can be

restricted to B, in the sense that

inf
q∈
(
L1
+,1(ν)

)k C(q) = inf
q∈Bk

C(q).

Proof. Remark that

inf
q∈
(
L1
+,1(ν)

)k C(q) = inf
q∈
(
L1
+,1(ν)

)k
{

1− exp
[
− inf

QX

(
K
(
QX ,PX

)
+QX

(
min
j∈J1,kK

K
(
qj, pX

)))]}

= 1− exp
{
− inf

QX

[
K
(
QX ,PX

)
+ inf

q∈
(
L1
+,1(ν)

)kQX

(
min
j∈J1,kK

K
(
qj, pX

))]}

and apply Lemma 12 on page 47 to restrict the minimization to q ∈ Bk. �

We have seen that

C(q) = 1− PX
(

max
j∈J1,kK

〈θj,W 〉H
)
,

where θj = exp
(
−K(qj, 1)

)
Ψ(µ qj) and W = Ψ

(
µ−1 log(pX)

)
. Note that for any q ∈ Bk,

‖θj‖2 ≤ ‖Ψ(µqj)‖2 = exp
(
µ2‖qj‖2

ν

)
≤ exp

(
µ2B2

)

and ‖W‖2 = exp
(
µ−2‖log(pX)‖2

ν

)
≤ exp

(
µ−2C2

)
,

so that ‖θj‖2‖W‖2 ≤ exp
(
µ2B2 + µ−2C2

)
= exp

(
2BC

)
,

if we choose µ =
√
C/B. In view of Lemma 24 on page 76, this leads to

Proposition 26 In the situation described at the beginning of this section, consider a sam-

ple X1, . . . , Xn made of n independent copies of X. For any family of k probability densities

q ∈
(
L1

+,1(ν)
)k

, consider the bounded criterion C(q) defined in Lemma 23 on page 76 and

its empirical counterpart

C(q) = 1− PX
(

exp
[
− min

j∈J1,kK
K
(
qj, pX

)])
.

Assume that k ≥ 2, n ≥ 4k exp(2BC)/ log(k) and δ ≥ exp
(
− log(k)n/

√
2
)
. With probability

at least 1− δ, for any q ∈ Bk,

C(q) ≤ C(q) +

√
log(δ−1)

2n
+

(
8k log(k)

n

)1/4

exp
(
BC/2

)
.
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Let q∗ ∈ Bk be a non random family of centers, and assume that k ≥ 2, n ≥ k exp(2BC)/ log(k),

and δ ≥ exp
(
−n log(k)/

√
2
)
. With probability at least 1− δ, for any q ∈ Bk,

C(q)− C(q∗) ≤ C(q)− C(q∗) +

√
2 log(δ−1)

n
+

(
32 k log(k)

n

)1/4

exp
(
BC/2

)
.

Consequently, if

q̂(X1, . . . , Xn) ∈ arg min
q∈Bk

C(q),

with probability at least 1− δ,

C(q̂ ) ≤ inf
q∈
(
L1
+,1(ν)

)k C(q) +

√
2 log(δ−1)

n
+

(
32 k log(k)

n

)1/4

exp
(
BC/2

)
.

4.3. A bounded criterion for the Euclidean k-means

In this section we are given a random vector X ∈ Rd and a sample X1, . . . , Xn made

of n independent copies of X. Introduce the random variable Y whose joint distribution

with X is given by PY |X = N
(
X, σ2Id

)
, and consider a family of k centers µ1, . . . , µk.

Consider a nearest neighbour classification function ` : Rd → J1, kK that satisfies therefore

‖x−µ`(x)‖ = minj∈J1,kK‖x−µj‖. Consider the conditional probability measure QY |X defined

as QY |X = N
(
µ`(X), σ

2Id
)
. Remark that the k-means Euclidean criterion can be written as

min
j∈J1,kK

‖X − µj‖2 = 2σ2K
(
QY |X ,PY |X

)
.

Inspired by this identity, we can introduce another loss function with the help of the model

Qµ =
{
QX,Y : QY |X = N

(
µ`(X), σ

2Id
)}
.

It is based on the identity

inf
Q∈Qµ

K
(
QX,Y ,PX,Y

)
= − logPX

(
−K

(
QY |X ,PY |X

))

= − logPX exp
(
− 1

2σ2
min
j∈J1,kK

‖X − µj‖2
)
.

In view of this, one may be incited to introduce the loss function

C(µ) = 1−exp
(
− inf

Q∈Qµ
K
(
QY |X ,PY |X

))
= PX

[
1− exp

(
− 1

2σ2
min
j∈J1,kK

‖X − µj‖2
)

︸ ︷︷ ︸
∈[0,1]

]
. (4.11)

It is the expectation of a loss function ranging in the unit interval and the corresponding

empirical risk function is

C(µ) = PX

[
1− exp

(
− 1

2σ2
min
j∈J1,kK

‖X − µj‖2
)]
.
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Observing also that

C(µ) = 1− max
j∈J1,kK

PX

(
exp
(
− 1

2σ2
‖X − µj‖2

))
,

from the Aronszajn theorem, there is a mapping Ψ : Rd → H to a separable Hilbert space

H such that

C(µ) = 1− PX
(

max
j∈J1,kK

〈Ψ(X),Ψ(µj)〉
)

= 1− PX
(

max
j∈J1,kK

〈θj,W 〉
)
,

where θj = Ψ(µj) and W = Ψ(X). Due to the Gaussian kernel, it is interesting to remark

that Ψ maps the whole Euclidean space Rd to the unit sphere of H. Therefore, we will not

need any boundedness of even integrability assumption on X to be in a situation to apply

Lemma 24 on page 76.

Proposition 27 Consider any k ≥ 2, any n ≥ 4k/ log(k) and any δ ≥ exp
(
−n log(k)/

√
2
)
.

With probability at least 1− δ, for any µ ∈ Rd×k,

C(µ) ≤ C(µ) +

√
log(δ−1)

2n
+

(
8k log(k)

n

)1/4

.

Assume now that k ≥ 2, n ≥ k/ log(k) and δ ≥ exp
(
−n log(k)/

√
2
)
. For any non random

family of centers µ∗ ∈ Rd×k, with probability at least 1− δ, for any µ ∈ Rd×k,

C(µ)− C(µ∗) ≤ C(µ)− C(µ∗) +

√
2 log(δ−1)

n
+

(
32 k log(k)

n

)1/4

.

Consequently, if

µ̂(X1, . . . , Xn) ∈ arg min
µ∈Rd×k

C(µ),

with probability at least 1− δ,

C(µ̂) ≤ inf
µ∈Rd×k

C(µ) +

√
2 log(δ−1)

n
+

(
32 k log(k)

n

)1/4

.

Note that the risk C(µ) can be defined by the right-hand side of equation (4.11) in the case

when X belongs to a separable Hilbert space and that in this case also Lemma 24 applies

and Proposition 27 holds true, although in this case the definition of PY |X requires the

construction of a Gaussian process similar to (4.5) on page 66.

4.4. PAC-Bayesian bounds for information fragmentation

In this section, we consider a random signal X ∈ Rd, a statistical sample X1, . . . , Xn

made of n independent copies of X and a set of k fragments µj ∈ Rd, 1 ≤ j ≤ k that we

would like to optimize to get the best possible approximation of X in terms of quantization.
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More precisely, letting Bj be the support of µj, defined as

Bj =
{
s ∈ J1, dK : µj,s 6= 0

}
, 1 ≤ j ≤ k,

introduce for each K ≤ k the family of subsets

Tµ,K =
{
A ⊂ J1, kK : |A| ≤ K and Bi ∩Bj = ∅, i 6= j ∈ A

}
.

We are willing to approximate X by
∑

j∈A µj for the best possible choice of A ∈ Tµ,K

depending on X. This can be seen as a structured instance of k-means, where the set of

centers is ∑

j∈A

µj, A ∈ Tµ,K .

Some care should be taken though, due to the fact that Tµ,K depends on µ and is therefore

not a constant size index set. Besides, we will take advantage of the special structure of this

fragment k-means problem to derive specific generalization bounds.

Let us first address the fact that Tµ,K depends on µ. To circumvent this, we will describe

the possible values of Tµ,K first, and then we will describe the range of values of µ that

corresponds to each value of Tµ,K . In other words we will condition our description of the

parameter space on the value of Tµ,K .

Remark that the value of Tµ,K depends only on the symmetric graph of the intersections

of the supports

Iµ =
{

(i, j) ∈ J1, kK2 : Bi ∩Bj 6= ∅
}
.

Therefore, we can describe the problem in the following way. Consider the set G of symmetric

and reflexive graphs on the set of vertices J1, kK (we mean by reflexive that the graph contains

the diagonal of J1, kK2). There are 2k(k−1)/2 such graphs (there are
(
k
2

)
distinct pairs of

vertices, so we can make 2(k2) possible connections), so that

log
(
|G|
)

=
k(k − 1)

2
log(2).

For each g ∈ G, and each maximum number of components K ≤ k, introduce the set of

subsets

Tg,K =
{
A ⊂ J1, kK : |A| ≤ K and A2 ∩ g = diag(A2)

}
.

(In other words the set of disconnected subsets of at most K vertices.) Consider the fragment

model

Mg =
{
µ ∈ Rd×k : Iµ ⊂ g

}
.

We see that Tg,K ⊂ Tµ,K , that TIµ,K = Tµ,K and that µ ∈MIµ . Therefore

{(∑

j∈A

µj, A ∈ Tµ,K

)
: µ ∈ Rd×k

}
⊂
{(∑

j∈A

µj, A ∈ Tg,K

)
: g ∈ G, µ ∈Mg

}
.
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Let us now describe possible risk functions for our problem. We assume in the following

discussion that the parameters k and K are fixed. The most obvious risk is the Euclidean

criterion

C1(g, µ) =
1

d
PX

(
min

A∈Tg,K

∥∥X −
∑

j∈A

µj
∥∥2
)
, g ∈ G, µ ∈Mg.

We normalize by 1/d to scale nicely with the dimension of the signal. Introducing the

representation of the problem by the triplet of random variables (X,S, V ), where PS |X(s) =

1/d and PV |S,X = N(XS, σ
2), we can rewrite C1 as

C1(g, µ) = PX

[
min

A∈Tg,K
PS

((
XS −

∑

j∈A

µj,S
)2
)]

= 2σ2PX

[
min

A∈Tg,K
PS

(
K
(
Q

(µ,A)
V |S ,PV |X,S

))]

= 2σ2 inf
Q∈Q1(g,µ)

K
(
QX,S, V ,PX,S, V

)
,

where Q
(µ,A)
V |S = N

(∑

j∈A

µj, S, σ
2
)
,

and where Q1(g, µ) =
{
QX,S, V : QX,S = PX,S, QV |X,S = Q

(µ,A(X))
V |S , A(X) ∈ Tg,K

}
.

Based on this interpretation, we can define smaller risk functions by relaxing the constraint

that QX,S = PX,S. For each µ ∈Mg and each A ∈ Tg,K , choose a classification function

`µ,A : J1, dK −→ A

such that

supp(µj) ⊂ `−1
µ,A(j), j ∈ A.

Note that ∑

j∈A

µj, s = µ`µ,A(s), s, s ∈ J1, dK.

Define

Bj =
⋂

A∈Tg,K
: j∈A

`−1
µ,A(j), j ∈ J1, kK.

and remark that

supp(µj) ⊂ Bj, j ∈ J1, kK.

Let us introduce the models

Q2(g, µ) =
{
QX,S, V : QS |X = PS, QV |X,S = Q

(A(X), µ)
V |S , A(X) ∈ Tg,K

}
, (QX is free)

Q3(g, µ) =
{
QX,S, V : QS |X, `(µ,A(X), S)=j = PS |S∈Bj , QV |X,S = Q

(A(X), µ)
V |S , A(X) ∈ Tg,K

}
,

(QX, `(µ,A(X),S) is free)

Q4(g, µ) =
{
QX,S, V : QS |X

( ⋃

j∈A(X)

Bj

)
= 1, QV |X,S = Q

(A(X), µ)
V |S , A(X) ∈ Tg,K

}
,
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(QX,S |S∈
⋃
j∈A(X)Bj

is free) and the risk functions

Ct(g, µ) = 2σ2
[
1− exp

(
− inf

Q∈Qt(g,µ)
K
(
QX,S, V ,PX,S, V

))]
, t ∈ J2, 4K.

Lemma 28 For any g ∈ G and any µ ∈Mg,

C2(g, µ) ≤ C1(g, µ)

and

C4(g, µ) ≤ C3(g, µ).

When the fragmentation is complete in the sense that

⋃

j∈A

Bj = J1, dK, A ∈ Tg,K ,

where

Tg,K =
{
A ∈ Tg,K : A ⊂ A′ ∈ Tg,K ⇒ A′ = A

}

are the maximal sets of Tg,K, then

C4(g, µ) ≤ C3(g, µ) ≤ C2(g, µ) ≤ C1(g, µ).

Proof. When the fragmentation is complete

Q1(g, µ) ⊂ Q2(g, µ) ⊂ Q3(g, µ) ⊂ Q4(g, µ),

implying that

C4(g, µ) ≤ C3(g, µ) ≤ C2(g, µ) ≤ 2σ2
[
1− exp

(
− inf

Q∈Q1(g,µ)
K
(
QX,S, V ,PX,S, V

))]

≤ 2σ2 inf
Q∈Q1(g,µ)

K
(
QX,S, V ,PX,S, V

)
= C1(g, µ).

In the general case, the central inclusion Q2(g, µ) ⊂ Q3(g, µ) does not hold and we cannot

compare C1 or C2 with C3 or C4. �

Lemma 29 For any g ∈ G and any µ ∈Mg,

C2(g, µ) = 2σ2PX

[
1− max

A∈Tg,K
exp

(
− 1

2σ2
PS

[(
XS −

∑

j∈A

µj,S

)2])]
,

C3(g, µ) = 2σ2PX

[
1− max

A∈Tg,K

∑

j∈A

PS(Bj) exp

(
− 1

2σ2
PS |S∈Bj

[(
XS − µj,S

)2
])]

,

C4(g, µ) = 2σ2PX

[
1− max

A∈Tg,K
PS

(∑

j∈A

1
(
S ∈ Bj

)
exp
[
− 1

2σ2

(
XS − µj,S

)2
])]

.
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We define the empirical counterparts of our three risk functions as

C1(g, µ) = PX

[
min

A∈Tg,K
PS

((
XS −

∑

j∈A

µj, S
)2
)]
, (4.12)

C2(g, µ) = 2σ2PX

[
1− max

A∈Tg,K
exp

(
− 1

2σ2
PS

[(
XS −

∑

j∈A

µj,S

)2])]
, (4.13)

C3(g, µ) = 2σ2PX

[
1− max

A∈Tg,K

∑

j∈A

PS(Bj) exp

(
− 1

2σ2
PS |S∈Bj

[(
XS − µj,S

)2])]
, (4.14)

C4(g, µ) = 2σ2PX

[
1− max

A∈Tg,K
PS

(∑

j∈A

1
(
S ∈ Bj

)
exp
[
− 1

2σ2

(
XS − µj,S

)2])]
. (4.15)

We put Ct(µ) = Ct(Iµ, µ) and consider the four optimization problems

inf
{
Ct(g, µ) : g ∈ G, µ ∈Mg

}
= inf

{
Ct(µ) : µ ∈ Rd×k

}
, 1 ≤ t ≤ 4,

based on the observation of the sample (X1, . . . , Xn), assuming that the data distribution

PX is unknown to the statistician.

We can readily state generalization bounds for the first two criteria, C1 and C2, using

results for the k-means algorithm for each value of g and taking a union bound. By union

bound, we mean that if B(g, δ) denotes an excess risk bound (whether for C1 or C2), for a

fixed g ∈ G, such that P
(
B
(
g, δ
))
≥ 1− δ. Then, by the union bound we get that

P
(⋂

g∈G

B
(
g, δ/|G|

))
≥ 1−

∑

g∈G

P
(

Ω \B
(
g, δ/|G|

))
≥ 1− δ,

where in our case |G| = 2k(k−1)/2.

Proceeding in this way and using Propositions 22 on page 74 and 27 on page 81 leads to

the following proposition.

Proposition 30 Define Cj(µ) = Cj(Iµ, µ). Assume that

PX
(

sup
s∈J1,dK

|Xs| ≤ B
)

= 1.

Consider any k ≥ 2 and any δ ≥ exp(−n/4). With probability at least 1 − δ, for any

µ ∈ [−B,B]d×k,

C1(µ) ≤ C1(µ) + 4B2

(√
k(k − 1) log(2) + 2 log(δ−1)

4n
+

(
8|Tµ,K | log(|Tµ,K |)

n

)1/4
)
.

For any non random set of k fragments µ∗ ∈ [−B,B]d×k, with probability at least 1− δ, for

any µ ∈ [−B,B]d×k,

C1(µ)− C1(µ∗)− C1(µ) + C1(µ∗)

≤ 4B2

(√
k(k − 1) log(2) + 2 log(δ−1)

n
+

(
32 |Tµ,K | log(|Tµ,K |)

n

)1/4
)
.
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Consequently, if

µ̂ ∈ arg min
µ∈[−B,B]d×k

C1(µ) + 4B2

(
32 |Tµ,K | log(|Tµ,K |)

n

)1/4

,

with probability at least 1− δ,

C1(µ̂) ≤ inf
µ∈Rd×k

C1(µ) + 4B2

(√
k(k − 1) log(2) + 2 log(δ−1)

n
+

(
32 |Tµ,K | log(|Tµ,K |)

n

)1/4
)
.

Proposition 31 Consider any k ≥ 2 and any δ ≥ exp(−n/4). With probability at least

1− δ, for any µ ∈ Rd×k,

C2(µ) ≤ C2(µ) + 2σ2

(√
k(k − 1) log(2) + 2 log(δ−1)

4n
+

(
8|Tµ,K | log(|Tµ,K |)

n

)1/4
)
.

For any non random set of k fragments µ∗ ∈ Rd×k, with probability at least 1 − δ, for any

µ ∈ Rd×k,

C2(µ)− C2(µ∗)− C2(µ) + C2(µ∗)

≤ 2σ2

(√
k(k − 1) log(2) + 2 log(δ−1)

n
+

(
32 |Tµ,K | log(|Tµ,K |)

n

)1/4
)
.

Consequently, if

µ̂ ∈ arg min
µ∈Rd×k

C2(µ) + 2σ2

(
32 |Tµ,K | log(|Tµ,K |)

n

)1/4

,

with probability at least 1− δ,

C2(µ̂) ≤ inf
µ∈Rd×k

C2(µ) + 2σ2

(√
k(k − 1) log(2) + 2 log(δ−1)

n
+

(
32 |Tµ,K | log(|Tµ,K |)

n

)1/4
)
.

The previous bounds depend on the factor |Tµ,K |, that is of order 2k, and therefore too large

in many situations. To get rid of this term, we will use the following lemma, that is specific

to the fragmentation setting.

Lemma 32 Let W = (Wj, 1 ≤ j ≤ k) be a random vector in the product Hk, where H

is a separable Hilbert space (that we can take as being `2 if we want). Consider a sample

(W (1), . . . ,W (n)) made of n independent copies of W . Consider a bounded parameter set

Θ ⊂ Hk and a set T of subsets of J1, kK. Assume that

PW

(∑

j∈A

〈θj,Wj〉 ∈ [a, b], A ∈ T, θ ∈ Θ

)
= 1.

Consider the risk

C(θ) = PW

(
min
A∈T

∑

j∈A

〈θj,Wj〉
)
, θ ∈ Θ,
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and its empirical counterpart

C(θ) = PW

(
min
A∈T

∑

j∈A

〈θj,Wj〉
)
, θ ∈ Θ

Put

K(T) = max
A∈T
|A|, ‖Θ‖ = sup

θ∈Θ

( k∑

j=1

‖θj‖2

)1/2

and ‖W‖∞ = max
j∈J1,kK

ess sup
PW

‖Wj‖.

Assume that |T| ≥ 3 and that δ ≥ exp
[
−n log

(
|T|
)
/
√

2
]
. With probability at least 1− δ, for

any θ ∈ Θ,

C(θ) ≤ C(θ) +

√
log(δ−1)

2n
(b− a) +

(
8K(T) log(|T|)

n

)1/4

‖Θ‖1/2‖W‖1/2
∞ (b− a)1/2.

Consider any non random value of the parameter θ∗ ∈ Θ. With probability at least 1 − δ,
for any θ ∈ Θ,

C(θ)− C(θ∗) ≤ C(θ)− C(θ∗)

+

√
2 log(δ−1)

n
(b− a) +

(
32K(T) log(|T|)

n

)1/4

‖Θ‖1/2‖W‖1/2
∞ (b− a)1/2.

Consequently, if

θ̂ ∈ arg min
θ∈Θ

C(θ),

with probability at least 1− δ,

C(θ̂) ≤ inf
θ∈Θ

C(θ) +

√
2 log(δ−1)

n
(b− a) +

(
32K(T) log(|T|)

n

)1/4

‖Θ‖1/2‖W‖1/2
∞ (b− a)1/2.

In expectation

PW (1),...,W (n)

(
C(θ̂)

)
≤ inf

θ∈Θ
C(θ) +

(
32K(T) log

(
|T|
)

n

)1/4

‖Θ‖1/2‖W‖1/2
∞ (b− a)1/2.

Proof. The proof follows the same line as Lemma 18 on page 65 and 19 on page 69. To

prove the first part of the lemma, we need to bound

M(θ, λ) =

∫
log

[
PW

(
exp
(
−λmin

A∈T

∑

j∈A

〈θ′j,Φ(Wj)〉
))]

dρθ(θ
′), θ ∈ Θ, λ > 0.

and to apply Lemma 17 on page 63. First remark that

M(θ, λ) ≤
∫

logPW

[
inf
α≥1

(∑

A∈T

exp
(
−αλ

∑

j∈A

〈θ′j,Φ(Wj)〉
))1/α]

dρθ(θ
′).

Then use Jensen’s inequality and Fubini’s theorem to move the integration with respect to

ρθ inside to get

M(θ, λ) ≤ logPW

[
inf
α≥1

(∑

A∈T

∫
exp
(
−αλ

∑

j∈A

〈θ′j,Φ(Wj)〉
)

dρθ(θ
′)

)1/α]
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= logPW

[
inf
α≥1

(∑

A∈T

exp
(
−αλ

∑

j∈A

〈θj,Wj〉+
α2λ2

2β

∑

j∈A

‖Wj‖2
))1/α]

≤ logPW

[
inf
α≥1

exp

(
log
(
|T|
)
/α− λmin

A∈T

∑

j∈A

〈θj,Wj〉+
αλ2

2β
K(T)‖W‖2

∞

)]

= λ‖W‖∞

√
2K(T) log

(
|T|
)

β
+ logPW

[
exp
(
−λmin

A∈T

∑

j∈A

〈θj,Wj〉
)]
.

The above inequalities require that α ≥ 1, that is

λ2K(T)‖W‖2
∞ ≤ 2β log

(
|T|
)
. (4.16)

Remembering Hoeffding’s lemma (used in the course of the proof of Lemma 18 on page 65),

we get

M(θ, λ) ≤ λ‖W‖∞

√
2K(T) log

(
|T|
)

β
− λPW

(
min
A∈T

∑

j∈A

〈θj,Wj〉
)

+
λ2

8
(b− a)2.

Thus according to Lemma 17 on page 63, with probability at least 1− δ, for any θ ∈ Θ,

PW

(
min
A∈T

∑

j∈A

〈θj,Wj〉
)
≤
∫
PW

(
min
A∈T

∑

j∈A

〈θ′j,Φ(Wj)〉
)

dρθ(θ
′)

+ ‖W‖∞

√
2K(T) log

(
|T|
)

β
+
λ

8
(b− a)2 +

β‖Θ‖2 + 2 log(δ−1)

2nλ
.

Note that

∫
PW

(
min
A∈T

∑

j∈A

〈θ′j,Φ(Wj)〉
)

dρθ(θ
′)

≤ PW
(

min
A∈T

∑

j∈A

∫
〈θ′j,Φ(Wj)〉 dρθ(θ′)

)
= PW

(
min
A∈T

∑

j∈A

〈θj,Wj〉
)
.

Take

λ = 2

√
β‖Θ‖2 + 2 log(δ−1)

n(b− a)2

to obtain

(
PW − PW

)(
min
A∈T

∑

j∈A

〈θj,Wj〉
)

≤ ‖W‖∞

√
2K(T) log

(
|T|
)

β
+ (b− a)

√
β‖Θ‖2 + 2 log(δ−1)

4n

≤ ‖W‖∞

√
2K(T) log

(
|T|
)

β
+ (b− a)

√
β‖Θ‖2

4n
+ (b− a)

√
log(δ−1)

2n
.
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Then choose

β = ‖W‖∞‖Θ‖−1(b− a)−1
√

8nK(T) log
(
|T|
)

to get

(
PW − PW

)(
min
A∈T

∑

j∈A

〈θj,Wj〉
)

≤
√

log(δ−1)

2n
(b− a) +

(
8K(T) log

(
|T|
)

n

)1/4

‖Θ‖1/2‖W‖1/2
∞ (b− a)1/2.

and

λ =
2

(b− a)

√√√√‖W‖∞‖Θ‖
(b− a)

√
8K(T) log

(
|T|
)

n
+

2 log(δ−1)

n
.

We have to satisfy condition (4.16) on page 88 that reads

‖W‖∞‖Θ‖
(b− a)

√
8K(T) log

(
|T|
)

n
+

2 log(δ−1)

n
≤

log
(
|T|
)

2

√
8n log

(
|T|
)

K(T)

(b− a)

‖W‖∞‖Θ‖

⇐⇒ δ ≥ exp

(
−n log

(
|T|
)
√
n log

(
|T|
)

2K(T)

(b− a)

‖W‖∞‖Θ‖

(
1− 2K(T)‖W‖2

∞‖Θ‖2

n log
(
|T|
)
(b− a)2

))
.

The condition is satisfied when |T| ≥ 2,

n ≥ 4K(T)‖W‖2
∞‖Θ‖2

log
(
|T|
)

(b− a)2
(4.17)

and δ ≥ exp
[
−n log

(
|T|
)
/
√

2
]
. When |T| ≥ 3 and condition (4.17) is not satisfied, the

generalization bound is larger than b − a and therefore trivially true. Thus we can drop

condition (4.17) if we assume that |T| ≥ 3.

To prove the second part of the lemma, we have got to study

M(θ, λ) =

∫
log

[
PW

(
exp
(
λmin
A∈T

∑

j∈A

〈θ∗j ,Wj〉−λmin
A∈T

∑

j∈A

〈θ′j,Wj〉
))]

dρθ(θ
′), θ ∈ Θ, λ > 0.

We can remark that PW almost surely

(
min
A∈T

∑

j∈A

〈θ∗j ,Wj〉 −min
A∈T

∑

j∈A

〈θ′j,Wj〉
)
∈ [a− b, b− a]

and proceed as in the first part of the proof to establish that

M(θ, λ) ≤ λ‖W‖∞

√
2K(T) log

(
|T|
)

β
+λPW

(
min
A∈T

∑

j∈A

〈θ∗j ,Wj〉−min
A∈T

∑

j∈A

〈θj,Wj〉
)

+
λ2

2
(b−a)2.

So the situation is the same as in the first part with a variance term increased by a factor

four, and except for this small difference the computations are the same. �
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To apply Lemma 32 on page 86, we need to put the risk functions Ct, t ∈ {1, 3, 4} in a

suitable form, that is to express the different risks in terms of a sum of inner products of

parameters θj and random vectors Wj belonging to some separable Hilbert space. Let us

notice that we will not be able to express criterion C2 in this form, since the summation

over j ∈ A is inside the exponential.

Let us start with C1, assuming that X ∈ [−B,B]d, so that we can also assume that

µ ∈ [−B,B]d×k, since shrinking µ to that range decreases the risk. Remark accordingly that

C1(g, µ) = PX

{
min

A∈Tg,K

[
PS

((∑

j∈A

µj,S

)2
)
− 2

∑

j∈A

PS
(
XS µj,S

)]}
+ PX

(
PS
(
X2
S

))

Moreover, since the supports are disjoint,

(∑

j∈A

µj,S

)2

=
∑

j∈A

µ2
j,S, A ∈ Tg,K .

Thus

C1(g, µ) = PX

(
min

A∈Tg,K

∑

j∈A

〈θj,Wj〉
)

+ PX
(
PS(X2

S)
)
,

where θj =
(
µj, B

−1PS(µ2
j,S)
)
∈ L2(PS)×R and Wj = (−2X,B), in the same space. Note

that

‖θj‖2 = PS
(
µ2
j,S

)
+B−2PS

(
µ2
j,S

)2 ≤ 2B2PS
(
supp(µj)

)
,

and that‖Wj‖2 = 4PS
(
X2
S

)
+B2 ≤ 5B2.

Moreover

−B2 ≤ −PS
(
X2
S

)
≤
∑

j∈A

〈θj,Wj〉

≤ PS
[(
XS −

∑

j∈A

µj,S

)2]
− PS

(
X2
S

)
≤ PS

(
X2
S

)
+ 2PS

[(∑

j∈A

µj,S

)2]
≤ 3B2.

Consider the model

M(S) =
{
µ ∈ [−B,B]d×k :

k∑

j=1

PS
(
supp(µj)

)
≤ S

}

and apply Lemma 32 on page 86 to the corresponding parameter set Θ. Taking into account

the fact that

‖Θ‖2 ≤ 2B2S,

we obtain

Proposition 33 Consider any k ≥ 3, any K ≥ 1, any δ ≥ exp
(
−n log(k)/

√
2
)

and any

S ∈ [1, k]. With probability at least 1− δ, for any µ ∈M(S),
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C1(µ)− PX
[
PS
(
X2
S

)]
≤ C1(µ)− PX

[
PS
(
X2
S

)]

+ 4B2

(√
k(k − 1) log(2) + 2 log(δ−1)

4n
+

(
5KS log

∣∣Tµ,K |
)

n

)1/4
)
.

For any non random set of fragments µ∗ ∈ M(S), with probability at least 1 − δ, for any

µ ∈M(S),

C1(µ)− C1(µ∗)− C1(µ) + C1(µ∗)

≤ 4B2

(√
k(k − 1) log(2) + 2 log(δ−1)

n
+

(
20KS log

∣∣Tµ,K |
)

n

)1/4
)
.

Consequently, if

µ̂ ∈ arg min
µ∈M(S)

C1(µ) + 4B2

(
20KS log

(
|Tµ,K |

)

n

)1/4

,

with probability at least 1− δ,

C1(µ̂) ≤ inf
µ∈M(S)

C1(µ) + 4B2

(√
k(k − 1) log(2) + 2 log(δ−1)

n
+

(
20KS log

∣∣Tµ,K |
)

n

)1/4
)
.

Let us now turn our attention to the risk function C3. Consider a fix set of subsets{
Bj ⊂ J1, dK : 1 ≤ j ≤ k

}
. Define accordingly

TB,K =
{
A ⊂ J1, kK : |A| ≤ K,Bi ∩Bj = ∅, (i, j) ∈ A2, i 6= j

}
.

Consider some separable Hilbert space H (for instance `2, the space of square integrable real

valued sequences). For each j ∈ J1, kK, there is a mapping

Ψj : Rd −→ H

such that

〈Ψj(x),Ψj(y)〉 = exp

(
− 1

2σ2
PS |S∈Bj

[
(xS − yS)2

])
.

Introduce the model

MB =
{
µ ∈ Rd×k : supp(µj) ⊂ Bj

}
.

For any (B, µ), the risk C3(B, µ) can be written as

C3(B, µ) = 1 + PX

(
min

A∈TB,K

∑

j∈A

〈θj,Wj〉
)
,

where θj = PS(Bj)Ψj(µj) and Wj = −Ψj(X). Note that

k∑

j=1

‖θj‖2 =
k∑

j=1

PS(Bj)

and that

‖Wj‖ = 1,

91



while almost surely ∑

j∈A

〈θj,Wj〉 ∈ [−1, 0].

Remark also that C3(µ) = C3(Iµ, µ) = C3

(
supp(µ), µ

)
. Applying Lemma 32 on page 86

gives

Proposition 34 Consider the model

M(S) =
{
µ ∈ Rd×k :

k∑

j=1

PS
(
supp(µj)

)
≤ S,

∣∣Tµ,K

∣∣ ≥ 3
}
.

Assume that δ ≥ exp
(
−n log(3)/

√
2
)

and that S ∈ [1, k]. With probability at least 1− δ, for

any µ ∈M(S),

C3(µ) ≤ C3(µ) + 2σ2

(√
kd log(2) + log(δ−1)

2n
+

(
8KS log

∣∣Tµ,K |
)

n

)1/4
)

Consider a non random set of fragments µ∗ ∈M(S). With probability at least 1− δ, for any

µ ∈M(S),

C3(µ)− C3(µ∗) ≤ C3(µ)− C3(µ∗)

≤ 2σ2

(√
2kd log(2) + 2 log(δ−1)

n
+

(
32KS log

(
|Tµ,K |

)

n

)1/4
)
.

Consequently, if

µ̂ ∈ arg min
µ∈M(S)

C3(µ) + 2σ2

(
32KS log

(
|Tµ,K |

)

n

)1/4

,

with probability at least 1− δ,

C3(µ̂) ≤ inf
µ∈M(S)

C3(µ) + 2σ2

(√
2kd log(2) + 2 log(δ−1)

n
+

(
32KS log

(
|Tµ,K |

)

n

)1/4
)
.

The strong point of this proposition is that we do not have to assume that the signal X or the

fragments µj are bounded. The weak point is that the union bound on Bj (that is essentially

on the choice of supp(µj)) introduce a dependence of the bound on the dimension d of the

signal. Accordingly, when X is a digital image of dimension d = 106 or so, the proposition

is not very meaningful, although it is still interesting within a submodel M(B,S) where B

is fixed and accordingly the term kd log(2) is not present.

To get a generalization bound that is independent of the dimension d and does not

require boundedness or integrability assumptions on the signal, we can turn to the smaller

and therefore less demanding risk function C4.

There is a mapping Ψ : R → H of the real line into a reproducing kernel separable

Hilbert space H such that

〈Ψ(x),Ψ(y)〉H = exp
(
− 1

2σ2
(y − x)2

)
, x, y ∈ R.
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We can then consider L2
(
HJ1,dK,PS

)
, another separable Hilbert space whose scalar product

is defined as

〈f, g〉 = PS

(
〈f(S), g(S)〉H

)
, f, g : J1, dK→ H.

Define for any (g, µ) such that g ∈ G and µ ∈Mg

θj(s) = 1
(
s ∈ Bj

)
Ψ
(
µj,s
)
,

Wj(s) = −Ψ(Xs), 1 ≤ s ≤ d, 1 ≤ j ≤ k.

We see that

C4(g, µ) = 2σ2
[
1 + PX

(
min

A∈Tg,K

∑

j∈A

〈θj,Wj〉

︸ ︷︷ ︸
∈[−1,0]

)]
.

Moreover ‖θj‖2 = PS
(
Bj

)
and ‖Wj‖ = 1. We obtain in view of Lemma 32 on page 86

Proposition 35 Define the model

M(S) =
{
µ ∈ Rd×k :

k∑

j=1

PS
(
supp(µj)

)
≤ S,

∣∣Tµ,K

∣∣ ≥ 3
}
,

with S ∈ [1, k] and assume that δ ≥ exp
(
−n log(3)/

√
2
)
. With probability at least 1− δ, for

any µ ∈M(S),

C4(µ) ≤ C4(µ) + 2σ2

(√
k(k − 1) log(2) + 2 log(δ−1)

4n
+

(
8KS log

(
|Tµ,K |

)

n

)1/4
)
.

Moreover, if µ∗ ∈ M(S) is a non random set of fragments, with probability at least 1 − δ,
for any µ ∈M(S),

C4(µ)− C4(µ∗)− C4(µ) + C4(µ∗)

≤ 2σ2

(√
k(k − 1) log(2) + 2 log(δ−1)

n
+

(
32KS log

(
|Tµ,K |

)

n

)1/4
)
.

Consequently, if

µ̂ ∈ arg min
µ∈M(S)

C4(µ) + 2σ2

(
32KS log

(
|Tµ,K |

)

n

)1/4

,

with probability at least 1− δ

C4(µ̂) ≤ inf
µ∈M(S)

C4(µ) + 2σ2

(√
k(k − 1) log(2) + 2 log(δ−1)

n
+

(
32K S log

(
|Tµ,K |

)

n

)1/4
)
.

We see from this proposition that when we work with the robust risk C4, we can obtain a

dimension free generalization bound that does not require any boundedness or integrability

condition on the signal X, while C4 still carries a meaningful notion of quantization. Another

useful remark to understand the bound is that
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log
(
|Tµ,K |

)
≤ log

[
K∑

m=0

(
k

m

)]
≤ log

[
K∑

m=0

km

m!

]

≤ log

[ ( k
K

)K K∑

m=0

Km

m!

]
≤ K log

(
ek

K

)
.

Thus the complexity term is bounded by

(
32K2 S log

(
ek/K

)

n

)1/4

.

A second important remark we can make is that the upper bounds we obtained are increasing

with respect to the term S, which represents the maximum area covered by the fragments. In

that way, if we diminish S, we obtained a tighter bound. Accordingly, the bounds advocate

to some extent the use of the fragmentation algorithm described in section 2.3 on page 29,

since the fragmentation algorithm decreases S at each step.

Besides, one can derive generalization bounds that are uniform with respect to S, using

a union bound over an appropriate grid containing a geometric progression of S values. This

requires to pay a small cost in the bound.

4.5. Faster bounds

In this section, we derive faster bounds for the different quantization criteria we developed

so far. To this aim, we will borrow ideas from the classical chaining method used to upper

bound the expected supremum of Gaussian processes (see [BLM13]). However, we will choose

a PAC-Bayesian approach to this chaining technique in the sense that we will use a sequence

of perturbations of the parameter parametrized by a variance ranging in a geometric grid,

which will play the role of the δ-covering sets in the classical chaining argument.

4.5.1. Faster bounds for information k-means and classical k-means. We can

reach faster speeds than in Lemma 18 on page 65 and the likes through some kind of PAC-

Bayesian chaining.

Lemma 36 Let W be a random vector in a separable Hilbert space H. Let (W1, . . . ,Wn) be

a sample made of n independent copies of W . Let Θ ⊂ Hk be a bounded set of parameters.

Define

‖Θ‖ = sup

{( k∑

j=1

‖θj‖2

)1/2

: θ ∈ Θ

}

and assume that

PW

(
min
j∈J1,kK

〈θj,W 〉 ∈ [a, b] for all θ ∈ Θ
)

= 1.

For any k ≥ 2, any n ≥ 2k and any δ ∈]0, 1[, with probability at least 1− δ, for any θ ∈ Θ,
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PW

(
min
j∈J1,kK

〈θj,W 〉
)
≤ 1

n

n∑

i=1

min
j∈J1,kK

〈θj,Wi〉

+

(
log(n/k)

log(2)

√
8 log(k)

n
+ 2

√
log(k)

n

)
‖Θ‖‖W‖∞

+

√√√√(
√

2 + 1)
(
k(b− a)2 + 2 log(ek)‖W‖2

∞‖Θ‖2
)

n
+

√
log(δ−1)

2n
(b− a).

If θ∗ ∈ Θ is a non random value of the parameter, with probability at least 1 − δ, for any

θ ∈ Θ,

(
PW − PW

)(
min
j∈J1,kK

〈θj,W 〉 − min
j∈J1,kK

〈θ∗j ,W 〉
)

≤

(
log(n/k)

log(2)

√
8 log(k)

n
+ 2

√
log(k)

n

)
‖Θ‖‖W‖∞

+

√√√√(
√

2 + 1)
(
k(b− a)2 + 2 log(ek)‖W‖2

∞‖Θ‖2
)

n
+

√
2 log(δ−1)

n
(b− a).

Therefore in the case when

θ̂ ∈ arg min
θ∈Θ

P
(

min
j∈J1,kK

〈θj,W 〉
)
,

PW

(
min
j∈J1,kK

〈θ̂j,W 〉
)
− inf

θ∈Θ
PW

(
min
j∈J1,kK

〈θj,W 〉
)

satisfies the same bound with the same proba-

bility.

Moreover, the expected excess risk satisfies

PW1,...,Wn

[
PW

(
min
j∈J1,kK

〈θ̂j,W 〉
)
− inf

θ∈Θ
PW

(
min
j∈J1,kK

〈θj,W 〉
)]

≤

(
log(n/k)

log(2)

√
8 log(k)

n
+ 2

√
log(k)

n

)
‖Θ‖ ‖W‖∞

+

√√√√
(√

2 + 1
)(
k(b− a)2 + 2 log(ek)‖W‖2

∞‖Θ‖2
)

n
.

Proof. Let

ρθ′ | θ = Pθi+β−1/2εi,i∈N

be a Gaussian conditional probability distribution with values in M1
+

(
RN
)
, where εi, i ∈ N

is an infinite sequence of independent standard normal random variables. When θ and

θ′ ∈ RN×k are made of k infinite sequences of real numbers, let

ρθ′ | θ =
k⊗

j=1

ρθ′j | θj
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be the tensor product of the previously defined conditional probability distributions. Let W

be a random vector in the separable Hilbert space `2 ⊂ RN. Consider the functions

f(θ, w) = min
j∈J1,kK

〈θj, w〉, θ ∈ RN×k, w ∈ RN,

where the scalar product is extended beyond `2 as already explained in a measurable but

not bilinear way (see equation (4.4) on page 65). Let

f(θ, w) = f(θ, w)− PW
(
f(θ,W )

)
, θ ∈ RN×k, w ∈ RN,

be the centered loss function. Previously introduced PAC-Bayesian inequalities (see Lemma 17

on page 63) show that

PW1, ... ,Wn

{
exp sup

θ∈`k2

[
nλ
(
PW − PW

)(
ρθ′ | θ − ρ2

θ′ | θ
)
f(θ′,W )

− nρθ′ | θ
[
log

(
PW

[
exp
(
−λ
(
δθ′′ | θ′ − ρθ′′ | θ′

)
f
(
θ′′,W

))])]
− β‖θ‖2

2

]}
≤ 1.

Apply Jensen’s inequality and devide by nλ to get

PW1, ... ,Wn

{
sup
θ∈`k2

[
(
PW − PW

)(
ρθ′ | θ − ρ2

θ′ | θ
)
f(θ′,W )

− λ−1ρθ′ | θ

[
log

(
PW

[
exp
(
−λ
(
δθ′′ | θ′ − ρθ′′ | θ′

)
f
(
θ′′,W

))])]
− β‖θ‖2

2nλ

]}
≤ 0.

Remark that

(
δθ′ | θ − ρθ′ | θ

)
f(θ′,W ) = ρθ′ | θ

(
min
j
〈θj,W 〉 −min

j
〈θ′j,W 〉

)

≤ ρθ′ | θ

(
max
j
〈θj − θ′j,W 〉

)
≤
√

2 log(k)/β‖W‖∞,

where the last inequality follows from the classical maximal inequality of the expectation of

the maximum of i.i.d Gaussian random variables (see section 2.5 in [BLM13]).

Writing a symmetric inequality for the opposite, we deduce that
∣∣∣
(
δθ′ | θ − ρθ′ | θ

)
f
(
θ′,W

)∣∣∣ ≤ 2
√

2 log(k)/β ‖W‖∞. (4.18)

Using Hoeffding’s inequality, and considering a closed bounded subset Θ ⊂ `k2, we deduce

that

PW1, ... ,Wn

[
sup
θ∈Θ

(
PW − PW

)(
ρθ′ | θ − ρ2

θ′ | θ
)
f(θ′,W )

]
≤ 4λ

β
log(k)‖W‖2

∞ +
β‖Θ‖2

2nλ
.

In view of this, choose

λ =
β‖Θ‖√

8n log(k)‖W‖∞
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and define

F = ‖W‖∞‖Θ‖
√

8 log(k)

n
. (4.19)

For any integer h,

PW1, ... ,Wn

{
sup
θ∈Θ

[(
PW − PW

)(
ρ2h

θ′|θ − ρ2h+1

θ′|θ

)
f
(
θ′,W

)]}
≤ F.

Summing up for h = 0 to H − 1, where H is to be chosen later, and exchanging
∑

h and

supθ, we deduce that

PW1, ... ,Wn

{
sup
θ∈Θ

[(
PW − PW

)(
ρθ′ | θ − ρ2H

θ′ | θ

)
f
(
θ′,W

)]}
≤ HF.

As we are interested in bounding
(
PW − PW

)
f(θ,W ), there remains to upper bound

(
PW − PW

)(
δθ′ | θ − ρθ′ | θ

)
f(θ′,W ) (4.20)

and
(
PW − PW

)
ρ2H

θ′ | θf(θ′,W ), (4.21)

or with a change of notation
(
PW − PW

)
ρθ′ | θf(θ′,W ). (4.22)

An almost sure bound for (4.20) is provided by equation (4.18). To bound (4.22), introduce

the influence function

ψ(x) =





log
(
1 + x+ x2/2

)
, x ≥ 0,

− log(1− x+ x2/2
)
, x ≤ 0

(4.23)

and put

f̃(θ,W ) = f(θ,W )− a+ b

2
.

Decompose (4.22) into

(
PW − PW

)
ρθ′ | θf(θ′,W ) =

ρθ′ | θ

[
PW f̃(θ′,W )− PW

(
λ−1ψ

[
λf̃(θ′,W )

])]
(4.24)

+ ρθ′ | θPW

[
λ−1ψ

[
λf̃(θ′,W )

]
− f̃(θ′,W )

]
. (4.25)

In order to bound (4.25), note that from lemma 7.2 in [Cat12]

∣∣x− ψ(x)
∣∣ ≤ x2

4(1 +
√

2)
, x ∈ R. (4.26)

Therefore, from the inequality (a + b)2 ≤ 2a2 + 2b2 and the properties of the variance, PW

almost surely,

ρθ′ | θ

[
λ−1ψ

[
λf̃(θ′,W )

]
− f̃(θ′,W )

]
≤ λ

4(1 +
√

2)
ρθ′ | θ

[
f̃(θ′,W )2

]
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≤ λ

2(1 +
√

2)

[(
min
j
〈θj,W 〉 − (a+ b)/2

)2
+ ρθ′ | 0

(
max
j
〈θ′j,W 〉2

)]
.

At this point, it remains to bound the variance term ρθ′ | 0

(
maxj〈θ′j,W 〉2

)
. Let us remark

that

ρθ′ | 0 ◦
(
θ′j 7→ 〈θ′j,W 〉

)−1
= N

(
0, ‖W‖2/β

)
.

Next, we need the following maximal inequality.

Lemma 37 Let (ε1, . . . , εk) be a sequence of Gaussian random variables such that εj ∼
N(0, σ2). We have

E
(

max
1≤j≤k

ε2
j

)
≤ 2σ2 log(ke).

Proof.

E
(

max
1≤j≤k

ε2
j

)
=

∫

R+

P
(

max
1≤j≤k

ε2
j > t

)
dt

≤
∫

R+

min

{ k∑

j=1

P
(
ε2
j > t

)
, 1

}
dt ≤

∫

R+

min
{

2kP
(
ε1 >

√
t
)
, 1
}

dt

≤
∫

R+

min
{
k exp

(
− t

2σ2

)
, 1
}

dt ≤ 2σ2 log(k) +

∫ +∞

2σ2 log(k)

k exp
(
− t

2σ2

)
dt

≤ 2σ2 log(k) + 2σ2 = 2σ2 log(ke).

�

Accordingly, we obtain PW almost surely,

ρθ′ | θ

[
λ−1ψ

[
λf̃(θ′,W )

]
− f̃(θ′,W )

]

≤ λ

2(1 +
√

2)

[(
min
j
〈θj,W 〉 − (a+ b)/2

)2
+ ρθ′ | 0

(
max
j
〈θ′j,W 〉2

)]

≤ λ

2(1 +
√

2)

[
(b− a)2/4 + 2 log(ek)‖W‖2

∞/β
]
. (4.27)

The right-hand side of this inequality provides an almost sure upper bound for (4.25). To

bound (4.24), or rather the expectation of an exponential moment of (4.24), we can write a

PAC-Bayesian bound using the influence function ψ.

PW1, ... ,Wn

{
sup
θ∈Θ

exp

[
−nλρθ′ | θPW

(
λ−1ψ

[
λf̃(θ′,W )

])

− nρθ′ | θ
[
log

(
PW

[
exp
(
ψ
[
−λf̃

(
θ′,W

)])])]
− β‖θ‖2

2

]}
≤ 1.

Remarking that

ψ(x) ≤ log
(
1 + x+ x2/2

)
, x ∈ R,

and removing the exponential according to Jensen’s inequality, we obtain
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PW1, ... ,Wn

{
sup
θ∈Θ

[
ρθ′ | θ

[
PW

(
f̃
(
θ′,W

))
− PW

(
λ−1ψ

[
λf̃(θ′,W )

])]

− λ

2
ρθ′ | θ

[
PW

(
f̃(θ′,W )2

)]]}
≤ β‖Θ‖2

2
.

Using the same maximal inequality in relation to the maximum of squared Gaussian random

variables, used in the course of equation (4.27) to bound the variance term, we get

PW1, ... ,Wn

{
sup
θ∈Θ

ρθ′ | θ

[
PW

(
f̃
(
θ′,W

))
− PW

(
λ−1ψ

[
λf̃(θ′,W )

])]}

≤ λ
[
(b− a)2/4 + 2 log(ek)‖W‖2

∞/β
]

+
β‖Θ‖2

2nλ
.

This provides an upper bound for (4.24). Combining it with the upper bound for (4.25)

gives an upper bound for (4.22) that reads

PW1, ... ,Wn

{
sup
θ∈Θ

(
PW − PW

)
ρθ′ | θf(θ′,W )

}

≤ (
√

2 + 1)λ

2

[
(b− a)2/4 + 2 log(ek)‖W‖2

∞/β
]

+
β‖Θ‖2

2nλ
.

Choosing

λ =

√
4β‖Θ‖2

(
√

2 + 1)
[
(b− a)2 + 8 log(ek)‖W‖2

∞/β
]
n

gives

PW1, ... ,Wn

{
sup
θ∈Θ

(
PW − PW

)
ρθ′ | θf(θ′,W )

}

≤ F̃ (β)
def
=

√√√√(
√

2 + 1)
(
β(b− a)2 + 8 log(ek)‖W‖2

∞

)
‖Θ‖2

4n
.

Putting everything together,

PW1, ... ,Wn

{
sup
θ∈Θ

(
PW − PW

)
f(θ,W )

}
≤ 2
√

2 log(k)/β‖W‖∞ + F̃ (2−Hβ) +HF,

where F is defined by equation (4.19) on page 97.

Let us choose β = 2n‖Θ‖−2 and H =
⌊
log(n/k)/ log(2)

⌋
, so that

2−Hβ ≤ 4k‖Θ‖−2.

We get

PW1, ... ,Wn

{
sup
θ∈Θ

(
PW − PW

)
f(θ,W )

}

≤

(
log(n/k)

log(2)

√
8 log(k)

n
+ 2

√
log(k)

n

)
‖Θ‖‖W‖∞
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+

√√√√(
√

2 + 1)
(
k(b− a)2 + 2 log(ek)‖W‖2

∞‖Θ‖2
)

n
.

The upper deviations from this mean are controled by the extension of Hoeffding’s bound

called the bounded difference inequality (see section 6.1 and theorem 6.2 in [BLM13]). It

gives with probability at least 1− δ

sup
θ∈Θ

(
PW − PW

)
f(θ,W ) ≤ PW1, ... ,Wn

{
sup
θ∈Θ

(
PW − PW

)
f(θ,W )

}
+

√
2 log(δ−1)

n
(b− a).

This proves the first statement of the lemma. To get the second one, add to the previous

inequality

PW1, ... ,Wn

{(
PW − PW

)
f(θ∗,W )

}
= 0

to get

PW1, ... ,Wn

{
sup
θ∈Θ

(
PW − PW

)(
f(θ,W )− f(θ∗,W )

)}

≤

(
log(n/k)

log(2)

√
8 log(k)

n
+ 2

√
log(k)

n

)
‖Θ‖‖W‖∞

+

√√√√(
√

2 + 1)
(
k(b− a)2 + 2 log(ek)‖W‖2

∞‖Θ‖2
)

n
.

and apply the bounded difference inequality to get the deviations. �

Let us first apply this lemma to the information k-means problem.

Proposition 38 Assume that

ess sup
X

(∫
p2
X dν

)
< +∞ and ess sup

X

(∫
log(pX)2 dν

)
< +∞.

Consider the information radius

R = inf
q∈L1

+,1(ν)
ess sup

X
K
(
q, pX

)

and the bounds

B = ess sup
X

(∫
p2
X dν

)1/2

exp(R)

and C = ess sup
X

(∫
log(pX)2 dν

)1/2

.

Introduce the parameter space

QB =
{
q ∈ L1

+,1(ν) ∩ L2(ν) :
∫
q2 dν ≤ B2

}
.

Given (X1, . . . , Xn), a sample made of n independent copies of X, with probability at least

1− δ, for any q ∈ Qk
B,
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PX

(
min
j∈J1,kK

K(qj, pX)
)
≤ 1

n

n∑

i=1

min
j∈J1,kK

K(qj, pXi)

+

(
log(n/k)

log(2)

√
8 k log(k)

n
+ 2

√
k log(k)

n

+

√
(
√

2 + 1)k
(
3 + 2 log(k)

)

n
+

√
log(δ−1)

2n

)
(
BC + 2 log(B)

)
.

Consider an empirical risk minimizer q̂(X1, . . . , Xn) ∈ Qk
B satisfying

q̂ ∈ arg min
q∈QkB

PX

(
min
j∈J1,kK

K
(
qj, pX

))
.

With probability at least 1− δ,

PX

(
min
j∈J1,kK

K
(
q̂, pX

) ∣∣X1, . . . , Xn

)
≤ inf

q∈
(
L1
+,1(ν)

)k PX
(

min
j∈J1,kK

K
(
qj, pX

))

+

(
log(n/k)

log(2)

√
8 k log(k)

n
+ 2

√
k log(k)

n

+

√
(
√

2 + 1) k
(
3 + 2 log(k)

)

n
+

√
2 log(δ−1)

n

)
(
BC + 2 log(B)

)
.

Proof. Consider the parametrization used in the proof of Proposition 20 on page 71, that

is θ =
(
q,K(q, 1)

)
∈ H and W =

(
− log(pX), µ−1

)
∈ H. This puts the information k-

means risk in a suitable form to apply Lemma 36 on page 94. Taking into account that

‖Θ‖‖W‖∞ ≤
√
k
(
BC + 2 log(B)

)
for a suitable choice of µ ends the proof. �

We can also apply the previous lemma to the Euclidean k-means algorithm.

Proposition 39 Consider a random vector X in a separable Hilbert space H. Let

(X1, . . . , Xn) be a sample made of n independent copies of X. Consider the ball of radius B

B =
{
x ∈ H : ‖x‖ ≤ B

}
.

Assume that P
(
X ∈ B

)
= 1 and consider an estimator

µ̂ ∈ arg min
µ∈Hk

PX

(
min
j∈J1,kK

‖X − µj‖2
)
.

Assume that n ≥ 2k and k ≥ 2. With probability at least 1− δ,

PX

(
min
j∈J1,kK

‖X − µ̂j‖2
)
≤ inf

µ∈Hk
PX

(
‖X − µj‖2

)

+B2 log
(n
k

)√k log(k)

n

(
6
√

2

log(2)

︸ ︷︷ ︸
≤12.3

+
6

log(n/k)
+

1

log(n/k)

√
2
(√

2 + 1
)(

17 + 9 log(k)
)

log(k)

)
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+ 4B2

√
2 log(δ−1)

n
.

Consequently, with probability at least 1− δ,

PX

(
min
j∈J1,kK

‖X − µ̂j‖2
)
≤ inf

µ∈Hk
PX

(
‖X − µj‖2

)

+ 16B2 log
(n
k

)√k log(k)

n
+ 4B2

√
2 log(δ−1)

n
.

In expectation

PX1,...,Xn

[
PX

(
min
j∈J1,kK

‖X − µ̂j‖2
)]
≤ inf

µ∈Hk
PX

(
‖X − µj‖2

)
+ 16B2 log

(n
k

)√k log(k)

n
.

In conclusion a chaining argument yields a dimension free non asymptotic generalization

bound that decreases in expectation as
√
k/n up to logarithmic factors.

Proof. Remark that

µ̂ ∈ arg min
µ∈Bk

PX

(
min
j∈J1,kK

‖µj‖2 − 2〈X,µj〉
)

and apply the lemma to W =
(
−2X, γB

)
∈ H ×R and θj =

(
µj, γ

−1‖µj‖2B−1
)
. Note that

‖W‖2‖θj‖2 ≤ B4
(
4 + γ2

)(
1 + γ−2

)
= B4

(
5 + γ2 + 4γ−2

)
.

Choose the optimal value γ2 = 2 to get

‖W‖2‖Θ‖2 ≤ 9kB4

Remark also that

〈θj,W 〉 ∈ [−B2,+3B2].

This gives the first statement of the proposition, according to Lemma 36 on page 94. Since

4B2 is a trivial bound, we have now to prove that for any k ≥ 2 and any n ≥ 2k,

min

{
4, log

(n
k

)√k log(k)

n

(
6
√

2

log(2)
+

6

log(n/k)
+

1

log(n/k)

√
2
(√

2 + 1
)(

17 + 9 log(k)
)

log(k)

)}

≤ 16 log
(n
k

)√k log(k)

n
.

Putting a =
6
√

2

log(2)
, b = 16, ρ = n/k,

η = 6 +

√
2
(√

2 + 1
)(

17 + 9 log(k)
)

log(k)
,

f(ρ, k) =
√

log(k)/ρ
(
a log(ρ) + η(k)

)

and g(ρ, k) = b
√

log(k)/ρ log(ρ),
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we have to prove that

min
{

4, f(ρ, k)
}
≤ g(ρ, k), ρ ≥ 2, k ≥ 2.

In other words, we have to prove that, when g(ρ, k) < f(ρ, k), then g(ρ, k) ≥ 4. This can

also be written as

g(ρ, k) ≥ 4, min{ρ, k} ≥ 2, g(ρ, k) < f(ρ, k).

According to the definitions, this is also equivalent to

log(ρ)− 2 log
(
log(ρ)

)
≤ 2 log(b/4) + log

(
log(k)

)
, min{ρ, k} ≥ 2, (b− a) log(ρ) ≤ η(k).

Since η is decreasing and since k 7→ log
(
log(k)

)
is increasing, if the statement is true for

k = 2, it is true for any k ≥ 2. Thus we have to prove that

log(ρ)− 2 log
(
log(ρ)

)
≤ 2 log(b/4) + log

(
log(2)

)
, log(2) ≤ log(ρ) ≤ η(2)/(b− a).

Putting ξ = log(ρ), we have to prove that

ξ − 2 log(ξ) ≤ 2 log(b/4) + log
(
log(2)

)
, log(2) ≤ ξ ≤ η(2)/(b− a).

Since ξ 7→ ξ − 2 log(ξ) is convex, it is enough to check the inequality at the two ends of

the interval, that is when ξ ∈ {log(2), η(2)/(b − a)}, which can be done numerically. More

precisely, we have to check that

2 log(b/4) + log
(
log(2)

)

−max
{

log(2)− 2 log
(
log(2)

)
, η(2)/(b− a)− 2 log

[
η(2)/(b− a)

]}
≥ 0,

and we get numerically that the left-hand side is larger than the minimum of 0.9 and 0.6.

�

4.5.2. Faster bounds for both the bounded information k-means and the

bounded k-means criterion. Let us derive faster generalization bounds concerning

the bounded information k-means and the bounded k-means criterion, that are defined re-

spectively in section 4.2 on page 75 and 4.3 on page 80.

Proposition 40 Let X1, . . . , Xn be made of n independent copies of X. For any family

of k probability densities q ∈
(
L1

+,1(ν)
)k

, consider the bounded criterion C(q) defined in

Lemma 23 on page 76 and its empirical counterpart

C(q) = 1− PX
(

exp
[
− min

j∈J1,kK
K
(
qj, pX

)])
.

Define the bounds B and C and the set B as in Lemma 25 on page 78. Assume that k ≥ 2

and n ≥ 2k. With probability at least 1− δ, for any q ∈ Bk,
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C(q) ≤ C(q) +

(
log(n/k)

log(2)

√
8 k log(k)

n
+ 2

√
k log(k)

n

)
exp
(
BC
)

+

√
(
√

2 + 1) k
[
1 + 2 log(ek) exp

(
2BC

)]

n
+

√
log(δ−1)

2n
.

Let q∗ ∈ Bk be a non random family of centers, and assume that k ≥ 2 and n ≥ 2k. With

probability at least 1− δ, for any q ∈ Bk,

C(q)− C(q∗) ≤ C(q)− C(q∗) +

(
log(n/k)

log(2)

√
8 k log(k)

n
+ 2

√
k log(k)

n

)
exp
(
BC
)

+

√
(
√

2 + 1) k
[
1 + 2 log(ek) exp

(
2BC

)]

n
+

√
2 log(δ−1)

n
.

Consequently, if

q̂(X1, . . . , Xn) ∈ arg min
q∈Bk

C(q),

with probability at least 1− δ,

C(q̂ ) ≤ inf
q∈
(
L1
+,1(ν)

)k C(q) +

(
log(n/k)

log(2)

√
8 k log(k)

n
+ 2

√
k log(k)

n

)
exp
(
BC
)

+

√
(
√

2 + 1) k
[
1 + 2 log(ek) exp

(
2BC

)]

n
+

√
2 log(δ−1)

n
.

One can get also a similar bound for the expected excess risk.

Proof. Remember from section 4.2 on page 75 that the risk C(q) can be expressed as

C(q) = 1− PW
(

max
j∈J1,kK

〈θj,W 〉
)

= 1 + PW

(
min
j∈J1,kK

〈−θj,W 〉
)
,

where θj = exp
(
−K(qj, 1)

)
Ψ(µ qj) and W = Ψ

(
µ−1 log(pX)

)
. Therefore we can apply

Lemma 36 on page 94, using the inequality ‖θj‖2‖W‖2 ≤ exp
(
2BC

)
. �

Now, let us look at the bounded k-means criterion.

Proposition 41 Consider the same situation as in Proposition 27 on page 81. Consider

any k ≥ 2 and any n ≥ 2k. With probability at least 1− δ, for any µ ∈ Rd×k,

C(µ) ≤ C(µ) +
log(n/k)

log(2)

√
8 k log(k)

n
+ 2

√
k log(k)

n

+

√
(
√

2 + 1) k
(
3 + 2 log(k)

)

n
+

√
log(δ−1)

2n
.

For any non random family of centers µ∗ ∈ Rd×k, with probability at least 1 − δ, for any

µ ∈ Rd×k,
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C(µ)− C(µ∗) ≤ C(µ)− C(µ∗) +
log(n/k)

log(2)

√
8 k log(k)

n
+ 2

√
k log(k)

n

+

√
(
√

2 + 1) k
(
3 + 2 log(k)

)

n
+

√
2 log(δ−1)

n
.

Consequently, if

µ̂(X1, . . . , Xn) ∈ arg min
µ∈Rd×k

C(µ),

with probability at least 1− δ,

C(µ̂) ≤ inf
µ∈Rd×k

C(µ) +
log(n/k)

log(2)

√
8 k log(k)

n
+ 2

√
k log(k)

n

+

√
(
√

2 + 1) k
(
3 + 2 log(k)

)

n
+

√
2 log(δ−1)

n
.

Proof. From section 4.3 on page 80, we can express the risk as

C(µ) = 1− PX
(

max
j∈J1,kK

〈θj,W 〉
)

= 1 + P
(

min
j∈J1,kK

〈−θj,W 〉
)
,

where θj = Ψ(µj) andW = Ψ(X), and where Ψ is the feature map associated to the Gaussian

kernel. Accordingly, θj and W belongs to the unit ball in the corresponding reproducing

kernel Hilbert space H, so that ‖W‖∞ ≤ 1 and ‖Θ‖ ≤
√
k. �

4.5.3. Faster bounds for information fragmentation. Similarly to what we have

done previously, we can also obtain faster bounds for information fragmentation. How-

ever, we need first to establish the equivalent of Lemma 36 on page 94 for the information

fragmentation risk.

Lemma 42 Let W = (Wj, 1 ≤ j ≤ k) be a random vector in the product Hk, where H

is a separable Hilbert space (that we can take as being `2 if we want). Consider a sample

(W (1), . . . ,W (n)) made of n independent copies of W . Consider a bounded parameter set

Θ ⊂ Hk and a set T of subsets of J1, kK. Assume that

PW

(∑

j∈A

〈θj,Wj〉 ∈ [a, b], A ∈ T, θ ∈ Θ

)
= 1.

Consider the risk

C(θ) = PW

(
min
A∈T

∑

j∈A

〈θj,Wj〉
)
, θ ∈ Θ,

and its empirical counterpart

C(θ) = PW

(
min
A∈T

∑

j∈A

〈θj,Wj〉
)
, θ ∈ Θ.

Put

K(T) = max
A∈T
|A|, ‖Θ‖ = sup

θ∈Θ

( k∑

j=1

‖θj‖2

)1/2

and ‖W‖∞ = max
j∈J1,kK

ess sup
PW

‖Wj‖.
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Let S be a positive real parameter. Assume that |T| ≥ 2 and that n ≥ 2SK(T). For any

δ ∈]0, 1[, with probability at least 1− δ, for any θ ∈ Θ,

C(θ) ≤ C(θ) +

(
log(nS−1K(T)−1)

log(2)

√
8K(T) log(|T|)

n
+ 2

√
K(T) log(|T|)

n

)
‖Θ‖‖W‖∞

+

√√√√(
√

2 + 1)
(
S(b− a)2 + 2 log(e|T|)‖W‖2

∞‖Θ‖2
)
K(T)

n
+

√
log(δ−1)

2n
(b− a).

If θ∗ ∈ Θ is a non random value of the parameter, with probability at least 1 − δ, for any

θ ∈ Θ,

C(θ)− C(θ∗) ≤ C(θ)− C(θ∗)

+

(
log
(
nS−1K(T)−1

)

log(2)

√
8K(T) log(|T|)

n
+ 2

√
K(T) log(|T|)

n

)
‖Θ‖‖W‖∞

+

√√√√(
√

2 + 1)
(
S (b− a)2 + 2 log(e|T|)‖W‖2

∞‖Θ‖2
)
K(T)

n
+

√
2 log(δ−1)

n
(b− a).

Consequently, if

θ̂ ∈ arg min
θ∈Θ

C(θ),

with probability at least 1− δ,

C(θ̂) ≤ inf
θ∈Θ

C(θ)+

(
log
(
nS−1K(T)−1

)

log(2)

√
8K(T) log(|T|)

n
+2

√
K(T) log(|T|)

n

)
‖Θ‖‖W‖∞

+

√√√√(
√

2 + 1)
(
S (b− a)2 + 2 log(e|T|)‖W‖2

∞‖Θ‖2
)
K(T)

n
+

√
2 log(δ−1)

n
(b− a)

In expectation

PW (1),...,W (n)

(
C(θ̂)

)

≤ inf
θ∈Θ

C(θ) +

(
log
(
nS−1K(T)−1

)

log(2)

√
8K(T) log(|T|)

n
+ 2

√
K(T) log(|T|)

n

)
‖Θ‖‖W‖∞

+

√√√√(
√

2 + 1)
(
S (b− a)2 + 2 log(e|T|)‖W‖2

∞‖Θ‖2
)
K(T)

n
.

Proof. We follow here the same arguments as in the proof of Lemma 36 on page 94, so

that we consider the same perturbation

ρθ′ | θ = Pθi+β−1/2εi,i∈N,

along with

ρθ′ | θ =
k⊗

j=1

ρθ′j | θj ,
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in the case where θ and θ′ ∈ RN×k.

Taking a basis, we can assume without loss of generality that W = (W1, . . . ,Wk) is a

random vector in the separable Hilbert space
(
`2

)k ⊂ RN×k. Define the loss function

f(θ, w) = min
A∈T

∑

j∈A

〈θj, wj〉, θ ∈ RN×k, w = (w1, . . . , wk) ∈ RN×k,

where the scalar product is extended beyond `2 as in equation (4.4) on page 65. Introduce

f(θ, w) = f(θ, w)− PW
(
f(θ,W )

)
, θ ∈ RN×k, w ∈ RN×k.

Since

min
A
aA −min

A
bA ≤ max

A
(aA − bA),

we see that

(
δθ′ | θ − ρθ′ | θ

)
f(θ′,W ) = ρθ′ | θ

(
min
A∈T

∑

j∈A

〈θj,Wj〉 −min
A∈T

∑

j∈A

〈θ′j,Wj〉
)

≤ ρθ′ | θ

(
max
A∈T

∑

j∈A

〈θj − θ′j,Wj〉
)
.

To bound the right-hand side of the previous inequality, we need a maximal inequality,

knowing that

ρθ′ | θ ◦
(
θ′j 7→

∑

j∈A

〈θj − θ′j,Wj〉
)−1

= N
(

0,
∑

j∈A

‖Wj‖2/β
)
.

Lemma 43 Let T be a set of subsets of J1, kK and let
(
εA
)
A∈T be a random process with

marginal distributions PεA = N
(
0, σ2

A

)
, A ∈ T. The expectation of its maximum is bounded

by

Pε

(
max
A∈T

εA

)
≤
√

2 log(|T|) max
A∈T

σ2
A.

Proof. By Jensen’s inequality, for any t > 0

Pε
(

max
A∈T

εA
)
≤ 1

t
logPε

(
max
A∈T

exp(t εA)
)

≤ 1

t
log
(∑

A∈T

Pε

(
exp
(
t εA
)))
≤ 1

t
log
(
|T| exp

(
t2 max

A∈T
σ2
A/2
))

≤ log(|T|)
t

+
t

2
max
A∈T

σ2
A.

Minimizing over t ends the proof. �

Applying this lemma in the particular case where σ2
A =

∑
j∈A‖Wj‖2/β, and remarking

that max
A∈T

σ2
A ≤ K(T)‖W‖2

∞/β, we get

(
δθ′ | θ − ρθ′ | θ

)
f(θ′,W ) ≤ ρθ′ | θ

(
max
A∈T

∑

j∈A

〈θj − θ′j,W 〉
)
≤
√

2K(T) log(|T|)/β‖W‖∞.
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Accordingly, the same bound holding true for the opposite,

∣∣∣
(
δθ′ | θ − ρθ′ | θ

)
f
(
θ′,W

)∣∣∣ ≤ 2
√

2K(T) log(|T|)/β‖W‖∞.

Following the same line of proof as in Lemma 36 on page 94, we obtain

PW1, ... ,Wn

[
sup
θ∈Θ

(
PW − PW

)(
ρθ′ | θ − ρ2

θ′ | θ
)
f(θ′,W )

]
≤ 4λ

β
K(T) log(|T|)‖W‖2

∞ +
β‖Θ‖2

2nλ
.

In the same way, choose

λ =
β‖Θ‖√

8nK(T) log(|T|) ‖W‖∞
and define

F = ‖W‖∞‖Θ‖
√

8K(T) log(|T|)
n

. (4.28)

Following the PAC-Bayesian chaining strategy introduced previously, let us consider a se-

quence of measures (ρ2h

θ′|θ)h∈J0, H−1K. For any integer h ∈ J0, H − 1K,

PW1, ... ,Wn

{
sup
θ∈Θ

[(
PW − PW

)(
ρ2h

θ′|θ − ρ2h+1

θ′|θ

)
f
(
θ′,W

)]}
≤ F.

Summing over h, we get

PW1, ... ,Wn

{
sup
θ∈Θ

[ H−1∑

h=0

(
PW − PW

)(
ρ2h

θ′|θ − ρ2h+1

θ′ | θ

)
f
(
θ′,W

)]}

≤ PW1, ... ,Wn

{H−1∑

h=0

sup
θ∈Θ

[(
PW − PW

)(
ρ2h

θ′ | θ − ρ2h+1

θ′ | θ

)
f
(
θ′,W

)]}
≤ HF.

Hence, simplifying the telescoping sums on the left-hand side yields

PW1, ... ,Wn

{
sup
θ∈Θ

[(
PW − PW

)(
ρθ′ | θ − ρ2H

θ′ | θ

)
f
(
θ′,W

)]}
≤ HF.

As in the proof of Lemma 36 on page 94, since we are dealing with
(
PW − PW

)
f(θ,W ), it

remains to bound the following two quantities

(
PW − PW

)(
δθ′ | θ − ρθ′ | θ

)
f(θ′,W ) (4.29)

and
(
PW − PW

)
ρ2H

θ′ | θf(θ′,W ). (4.30)

For the sake of simplicity, we can rewrite this last quantity as

(
PW − PW

)
ρθ′ | θf(θ′,W ), (4.31)

after a change of notation. Using the influence function ψ introduced in [Cat12] and defined

by equation (4.23) on page 97 to decompose

(
PW − PW

)
ρθ′ | θf(θ′,W ),
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into a sub-Gaussian part and an other part representing extreme values, we get

(
PW − PW

)
ρθ′ | θf(θ′,W ) =

ρθ′ | θ

[
PW f̃(θ′,W )− PW

(
λ−1ψ

[
λf̃(θ′,W )

])]
(4.32)

+ ρθ′ | θPW

[
λ−1ψ

[
λf̃(θ′,W )

]
− f̃(θ′,W )

]
, (4.33)

where f̃(θ,W ) is defined in the same way as in the proof of 36 on page 94 as

f̃(θ,W ) = f(θ,W )− a+ b

2
.

From inequality (4.26) on page 97, the inequality (a+ b)2 ≤ 2a2 + 2b2, and the properties of

the variance, we get

ρθ′ | θ

[
λ−1ψ

[
λf̃(θ′,W )

]
− f̃(θ′,W )

]
≤ λ

4(1 +
√

2)
ρθ′ | θ

[
f̃(θ′,W )2

]

≤ λ

2(1 +
√

2)

[(
min
A∈T

∑

j∈A

〈θj,Wj〉 − (a+ b)/2
)2

+ ρθ′ | 0

(
max
A∈T

(∑

j∈A

〈θ′j,Wj〉
)2
)]
.

Next, we need to bound the expectation of the maximum of the squares of Gaussian random

variables. Consider the following adaptation of Lemma 37 on page 98.

Lemma 44 Let T be a set of subsets of J1, kK and let
(
εA
)
A∈T be a random process with

marginal distributions PεA = N
(
0, σ2

A

)
, A ∈ T. It satisfies

E
(

max
A∈T

ε2
A

)
≤ 2 (max

A∈T
σ2
A) log(|T|e) .

Proof. It is similar to Lemma 37 on page 98. Indeed,

Pε
(
max
A∈T

ε2
A

)
≤
∫

R+

min
{∑

A∈T

exp
(
− t

2σ2
A

))
, 1
}

dt

≤
∫

R+

min
{
|T| exp

(
− t

2 max
A∈T

σ2
A

)
, 1
}

dt = 2 (max
A∈T

σ2
A) log(|T|e).

�

From this lemma, we obtain, PW almost surely,

ρθ′ | θ

[
λ−1ψ

[
λf̃(θ′,W )

]
− f̃(θ′,W )

]

≤ λ

2(1 +
√

2)

[(
min
A∈T

∑

j∈A

〈θj,W 〉 − (a+ b)/2
)2

+ ρθ′ | 0

(
max
A∈T

(∑

j∈A

〈θj,Wj〉
)2
)]

≤ λ

2(1 +
√

2)

[
(b− a)2/4 + 2K(T) log(e|T|)‖W‖2

∞/β
]
. (4.34)

This gives a bound for (4.33). It remains to derive an upper bound for (4.32). Here, we

just have to follow the same line of reasoning as in the proof of the Lemma 36 on page 94,
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which consists in applying a PAC-Bayesian inequality with influence function ψ combined

with Jensen’s inequality. Using the previous lemma, we are led to

PW1, ... ,Wn

{
sup
θ∈Θ

ρθ′ | θ

[
PW

(
f̃
(
θ′,W

))
− PW

(
λ−1ψ

[
λf̃(θ′,W )

])]}

≤ λ
[
(b− a)2/4 + 2K(T) log(e|T|)‖W‖2

∞/β
]

+
β‖Θ‖2

2nλ
.

Then, combining this inequality with (4.34), we get

PW1, ... ,Wn

{
sup
θ∈Θ

(
PW − PW

)
ρθ′ | θf(θ′,W )

}

≤ (
√

2 + 1)λ

2

[
(b− a)2/4 + 2K(T) log(e|T|)‖W‖2

∞/β
]

+
β‖Θ‖2

2nλ
.

At this point, we choose

λ =

√
4β‖Θ‖2

(
√

2 + 1)
[
(b− a)2 + 8K(T) log(e|T|)‖W‖2

∞/β
]
n
,

which leads to

PW1, ... ,Wn

{
sup
θ∈Θ

(
PW − PW

)
ρθ′ | θf(θ′,W )

}

≤ F̃ (β)
def
=

√√√√(
√

2 + 1)
(
β(b− a)2 + 8K(T) log(e|T|)‖W‖2

∞

)
‖Θ‖2

4n
.

Therefore,

PW1, ... ,Wn

{
sup
θ∈Θ

(
PW − PW

)
f(θ,W )

}
≤ 2
√

2K(T) log(|T|)/β‖W‖∞ + F̃ (2−Hβ) +HF,

where F is defined in (4.28). Take

H =

⌊
log

(
n

K(T)S

)
log(2)−1

⌋

and β = 2n‖Θ‖−2, so that

2−Hβ ≤ 4K(T)S‖Θ‖−2.

We obtain

PW1, ... ,Wn

{
sup
θ∈Θ

(
PW − PW

)
f(θ,W )

}

≤

(
log
(
nS−1K(T)−1

)

log(2)

√
8K(T) log(|T|)

n
+ 2

√
K(T) log(|T|)

n

)
‖Θ‖‖W‖∞

+

√√√√(
√

2 + 1)
(
S(b− a)2 + 2 log

(
e|T|

)
‖W‖2

∞‖Θ‖2
)
K(T)

n
.
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Accordingly, from the bounded difference inequality, we get with probability at least 1− δ

sup
θ∈Θ

(
PW − PW

)
f(θ,W )

≤

(
log
(
nS−1K(T)−1

)

log(2)

√
8K(T) log(|T|)

n
+ 2

√
K(T) log(|T|)

n

)
‖Θ‖‖W‖∞

+

√√√√(
√

2 + 1)
(
S(b− a)2 + 2 log

(
e|T|

)
‖W‖2

∞‖Θ‖2
)
K(T)

n
+

√
log(δ−1)

2n
(b− a).

In that way, we obtain the first part of the lemma. The other part follows in the same

manner as in the proof of Lemma 36 on page 94. �

At this point, we are in a position to apply previous Lemma 42 on page 105 and get

faster speeds with respect to n than in Propositions 33 on page 90, 34 on page 92 and 35 on

page 93 for the different risks (Ci)i∈{1,3,4} defined in section 4.4 on page 81.

Proposition 45 Consider the same setting as in Proposition 33 on page 90. Consider the

model

M(S) =
{
µ ∈ [−B,B]d×k :

k∑

j=1

PS
(
supp(µj)

)
≤ S, |Tµ,K | ≥ 2

}
.

Consider any k ≥ 2, any K ≥ 1, any S ∈ [1, k], any n ≥ 2SK, and any δ ∈]0, 1[. With

probability at least 1− δ, for any µ ∈M(S),

C1(µ)− PX
[
PS
(
X2
S

)]
≤ C1(µ)− PX

[
PS
(
X2
S

)]

+
√

10B2

(
log(nS−1K−1)

log(2)

√
8SK log(|Tµ,K |)

n
+ 2

√
SK log(|Tµ,K |)

n

)

+B2

(√
4(
√

2 + 1)
(
9 + 5 log(|Tµ,K |)

)
SK

n
+ 2

√
k(k − 1) log(2) + 2 log(δ−1)

n

)
.

For any non random set of fragments µ∗ ∈ M(S), with probability at least 1 − δ, for any

µ ∈M(S),

C1(µ)− C1(µ∗)− C1(µ) + C1(µ∗)

≤

(
log(nS−1K−1)

log(2)

√
8SK log(|Tµ,K |)

n
+ 2

√
SK log(|Tµ,K |)

n

)
√

10B2

+

√√√√4(
√

2 + 1)
(

4 + 5 log(e|Tµ,K |)
)
SK

n
B2 + 4

√
k(k − 1) log(2) + 2 log(δ−1)

n
B2.

Consequently, if

µ̂ ∈ arg min
µ∈M(S)

C1(µ) +

(
log(nS−1K−1)

log(2)

√
8SK log(|Tµ,K |)

n
+ 2

√
SK log(|Tµ,K |)

n

)
√

10B2
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+

√√√√4(
√

2 + 1)
(

4 + 5 log(e|Tµ,K |)
)
SK

n
B2,

with probability at least 1− δ,

C1(µ̂) ≤ inf
µ∈M(S)

C1(µ)+

(
log(nS−1K−1)

log(2)

√
8SK log(|Tµ,K |)

n
+2

√
SK log(|Tµ,K |)

n

)
√

10B2

+

√√√√4(
√

2 + 1)
(

4 + 5 log(e|Tµ,K |)
)
SK

n
B2 + 4

√
k(k − 1) log(2) + 2 log(δ−1)

n
B2.

Proof. In section 4.4 on page 81, the risk C1 has already been written in a suitable form.

Therefore the proof follows from Lemma 42 on page 105 and the bounds ‖Θ‖ ≤ B
√

2S,

‖W‖∞ ≤ B
√

5 and K(T) ≤ K, along with b− a ≤ 4B2. �

Let us state now the faster bounds related to the risk C3.

Proposition 46 Consider the model

M(S) =
{
µ ∈ Rd×k :

k∑

j=1

PS
(
supp(µj)

)
≤ S,

∣∣Tµ,K

∣∣ ≥ 2
}
,

where S ∈ [1, k]. Assume that n ≥ 2SK. For any δ ∈]0, 1[, with probability at least 1 − δ,
for any µ ∈M(S),

C3(µ) ≤ C3(µ) + 2σ2

(
log
(
nS−1K−1

)

log(2)

√
8SK log(|Tµ,K |)

n
+ 2

√
SK log(|Tµ,K |)

n

)

+ 2σ2

√√√√(
√

2 + 1)
(

1 + 2 log
(
e|Tµ,K |

))
SK

n
+ σ2

√
2kd log(2) + 2 log(δ−1)

n
.

Consider a non random set of fragments µ∗ ∈M(S). With probability at least 1− δ, for any

µ ∈M(S),

C3(µ)− C3(µ∗) ≤ C3(µ)− C3(µ∗)

+ 2σ2

(
log(nS−1K−1)

log(2)

√
8SK log(|Tµ,K |)

n
+ 2

√
SK log(|Tµ,K |)

n

)

+ 2σ2

√√√√(
√

2 + 1)
(

1 + 2 log(e|Tµ,K |)
)
SK

n
+ 2σ2

√
2kd log(2) + 2 log(δ−1)

n
.

Consequently, if

µ̂ ∈ arg min
µ∈M(S)

C3(µ) + 2σ2

(
log(nS−1K−1)

log(2)

√
8SK log(|Tµ,K |)

n
+ 2

√
SK log(|Tµ,K |)

n

)
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+ 2σ2

√√√√(
√

2 + 1)
(

1 + 2 log(e|Tµ,K |)
)
SK

n
,

with probability at least 1− δ,

C3(µ̂) ≤ inf
µ∈M(S)

C3(µ)

+ 2σ2

(
log(nS−1K−1)

log(2)

√
8SK log(|Tµ,K |)

n
+ 2

√
SK log(|Tµ,K |)

n

)

+ 2σ2

√√√√(
√

2 + 1)
(

1 + 2 log(e|Tµ,K |)
)
SK

n
+ 2σ2

√
2kd log(2) + 2 log(δ−1)

n
.

Proof. Considering the formulation of the risk C3 in terms of θ and W given in section 4.4

on page 81 and using the fact that ‖W‖∞ = 1, b− a = 1 and ‖Θ‖ ≤ S1/2, we conclude from

Lemma 42 on page 105. �

As discussed in section 4.4, the generalization bounds obtained for the risk C3 depend

on the (possibly high) dimension d of the signal. This is a motivation to consider rather the

risk C4, for which we know how to get dimension free bounds.

Proposition 47 Define the model

M(S) =
{
µ ∈ Rd×k :

k∑

j=1

PS
(
supp(µj)

)
≤ S,

∣∣Tµ,K

∣∣ ≥ 2
}
,

where S ∈ [1, k] and assume that n ≥ 2SK. For any δ ∈]0, 1[, with probability at least 1− δ,
for any µ ∈M(S),

C4(µ) ≤ C4(µ) + 2σ2

(
log(nS−1K−1)

log(2)

√
8SK log(|Tµ,K |)

n
+ 2

√
SK log(|Tµ,K |)

n

)

+ 2σ2

√√√√(
√

2 + 1)
(

1 + 2 log(e|Tµ,K |)
)
SK

n
+ σ2

√
k(k − 1) log(2) + 2 log(δ−1)

n
.

Moreover, if µ∗ ∈ M(S) is a non random set of fragments, with probability at least 1 − δ,
for any µ ∈M(S),

C4(µ)− C4(µ∗)− C4(µ) + C4(µ∗)

≤ 2σ2

(
log(nS−1K−1)

log(2)

√
8SK log(|Tµ,K |)

n
+ 2

√
SK log(|Tµ,K |)

n

)

+ 2σ2

√√√√(
√

2 + 1)
(

1 + 2 log(e|Tµ,K |)
)
SK

n
+ 2σ2

√
k(k − 1) log(2) + 2 log(δ−1)

n
.
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Consequently, if

µ̂ ∈ arg min
µ∈M(S)

C4(µ) + 2σ2

(
log(nS−1K−1)

log(2)

√
8SK log(|Tµ,K |)

n
+ 2

√
SK log(|Tµ,K |)

n

)

+ 2σ2

√√√√(
√

2 + 1)
(

1 + 2 log(e|Tµ,K |)
)
SK

n
,

with probability at least 1− δ

C4(µ̂) ≤ inf
µ∈M(S)

C4(µ) + 2σ2

(
log(nS−1K−1)

log(2)

√
8SK log(|Tµ,K |)

n
+ 2

√
SK log(|Tµ,K |)

n

)

+ 2σ2

√√√√(
√

2 + 1)
(

1 + 2 log(e|Tµ,K |)
)
SK

n
+ 2σ2

√
k(k − 1) log(2) + 2 log(δ−1)

n
.

Proof. We can apply Lemma 42 on page 105 to the risk C4 expressed in terms of θ and

W . Let us recall that

C4(g, µ) = 2σ2
[
1 + PX

(
min

A∈Tg,K

∑

j∈A

〈θj,Wj〉

︸ ︷︷ ︸
∈[−1,0]

)]
,

where

θj(s) = 1
(
s ∈ Bj

)
Ψ
(
µj,s
)
,

Wj(s) = −Ψ(Xs), 1 ≤ s ≤ d, 1 ≤ j ≤ k.

We conclude the proof remarking that ‖θj‖2 = PS
(
Bj

)
, ‖W‖∞ = 1, and ‖Θ‖ ≤ S1/2. �
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CHAPTER 5

Experiment on digital images

In this section, we describe some very preliminary experiment showing what to expect

and hope for. We wrote a program that computes the syntax tree from a training set

(X1, . . . , Xn) ∈ Rd×n. Each Xi is a 300 × 300 greyscale image extracted at random from

two larger greyscale images (we only kept the green channel from the original jpeg images)

and n = 200. In order to play with the different parameters and visualize the experimental

results in an interactive way, we decided to create a graphical user interface with the help of

the rWidgets2 package of the R language. We created two control panes containing several

buttons and sliders to monitor the experiment. A first pane allows to load images and ex-

tract samples from them as square windows of the desired size. The positions of the windows

can be constrained to a grid and are otherwise random. The grey levels are transformed by

f(x) = log(10ε + x), x ∈ [0, 1],

the default value for ε being −2 as seen on the screen shot. This transform is justified by the

fact that we will use an additive error model whereas we are more sensitive to light intensity

ratios than to light intensity differences. Hence the logarithmic transform.

This is the control pane allowing to pick-up the training set drawn at random from larger

scenes.
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We will show results on a sample drawn from two scenes featuring the same kitten.

The images are drawn from the yellow area of each scene. This is the beginning of the

training sample

. . . . . . . . .

The fragmentation and syntax analysis are launched from a second control pane.

116



The parameter β = Beta is used to compute the fragmentation criterion

2× 10β |Bj| − |Aj|.

The parameter τ = Threshold value is used to compute the threshold

α = τ PS

[
Var

(
PXI,S |S

)]

appearing in equation (2.9) on page 30. Pressing the Compute initial patches button executes

the sample fragmentation into a maximum number of patches prescribed in the text field

Number of patches. Pressing the Compute next level patches button computes the next two

levels of the syntax tree. This means that it computes pair labels and deduces from the

compression of the pair label list a syntax classification f to be applied to pair labels.

Pressing the button many times, we can grow the syntax tree ad libitum, until no new

relabelling is observed. See the figure representing the syntax tree on page 36. The text

fields Number of merged labels and Number of syntax labels specify the maximum number of

labels to be created at each stage. Visualization is performed with the help of the sliders

occupying the second half of the control pane. The first slider, named Syntax level, describes

which level of the syntax tree is displayed. The second slider, titled Show patches in image

number, displays all the patches in a given image (at the syntax level indicated by the

previous slider). The next slider goes through all the patches present in a given image at a
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given level. In other words, it displays one level of the syntax tree of a given image. The last

slider, titled Change image, gathers all the images containing a given patch label at a given

syntax level. The buttons Show all and Show patch toggle between displaying a particular

patch on a green background and displaying all the patches present in one image using a

rainbow of colors.

The experiment can be viewed as a crude vision model where images of two scenes are

acquired by some sensor or retina through random eye saccades. In our experiment, the

sample is shuffled by a random permutation and the locations in each scene of the acquired

images are also random.

This is somehow a stress test for a vision model since there is no structure in the image

acquisition process, by opposition to what we would get for instance if the image sample

was extracted from a video stream.

In this situation, two questions come to mind.

1. Will our unsupervised classification algorithm be able to put the same label on images

that come from the same scene and are overlapping, so that they have some content in

common, but translated. Note that our syntax analysis does not include any explicit

translation model. The algorithm only compares pixel values being at the same pixel

location in different sample images. The algorithm indeed makes no use of pixel

location, that is of the sensor geometry. It is invariant with respect to any arbitrary

permutation of the pixels, as long as the same permutation is applied at the same time

to all sample images. Thus labelling translated patterns is a challenge. What we hope

for is that syntax analysis can solve the problem of invariant pattern classification in a

novel way. Syntax analysis describes the world using a mix of logics and compression

theory, building up relabelling schemes described by rewriting rules and chosen for

there ability to compress information. Chaining rewriting rules can be seen as some

sort of crude logical reasoning. So the question is whether this crude logical reasoning

can produce a flexible solution to the problem of invariant pattern recognition ? The

more classical approach is to model explicitly pattern transformations using geometry

or differential geometry and to pose the question of invariant classification with respect

to a family of transformations in mathematical terms. Unfortunately, this route leads

to daunting mathematical challenges, even in the somehow simplest case of translation

invariance.

2. Will syntax analysis be able to put the same label on images containing related patterns

coming from different scenes ? For example, in our sample, the kitten’s head is present

in the two scenes, but slightly rotated and on different backgrounds. Will it be possible

to identify those two views of the same head, giving them the same label ?

We will see that the answer to both questions is positive. Although more experiments would

be needed, to see how stable things are and how the algorithm scales with larger data bases,
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this is encouraging.

Let us show first the result of the fragmentation algorithm itself. Visually, when α =

1/10, the coding distortion does not ruin the image content. We give two examples, on the

left we see the patch reconstruction and on the right the original image

We now show two examples of fragment supports (when we use 1000 fragments for the whole

sample). Colors do not match, we use a different rainbow in the two examples, each rainbow

indexing only the fragments present in the corresponding image.
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We will now choose an image, and show first its fragments

and then its syntax labels at the highest level (we computed a syntax tree with 2× 5 levels,

stopping when no new syntax levels are added). The levels are counted as in the diagram on

page 36. Two levels are created each time we press the Compute next level patches button.
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We show all the other images sharing with it a syntax label of the highest level. It turns out

that each label is either specific to the reference image, or shared by two images, except for

one label that is shared by three images. We start with a label shared by an image drawn

from the other scene, since this is maybe the most exciting part of the result

On the left, we can see the patch corresponding to the common label. In this case it has the
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same support on both images, but we will see that it is not always the case (as expected).

Let us see now another patch

This time the patch has the same syntax label, but not the same support in both images. We

can see that the support is somewhat shifted in the direction of the translation. This gives

the impression that the syntax analysis performed on top of the fragmentation algorithm

brings a positive contribution to the detection of translations. Let us see the other patches.

Here again, the patch support changes
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whereas in the next case, it is fixed

so that we do not repeat the original image. It is the same with the next two patches.
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Finally, we have a syntax label indexing three images, whose support takes two different

values, as shown in the next three pictures.
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In conclusion, this small experiment let us hope for much. We have a pattern matching

principle that produces visually interesting results. Moreover, it can be applied directly

on high dimensional data, here we work with a sample of size 200 in R90000 without being

plagued by the curse of dimension. This was predicted at least for the fragmentation part

by our dimension free generalization bounds, and it seems to be also the case in practice.

That does not mean that, if we were to build a more serious vision algorithm, we could not

combine the approach with some preprocessing. Indeed, our algorithm can take as input

any vector of measurements, so we could try to extract first a vector of real valued features,

like for instance wavelet coefficients. A more thoughtful vision model would also presumably

include some sort of multi-scale processing, as well as the use of a retina with a space varying

pixel density. Anyhow we preferred to apply a single general purpose treatment to raw data,

to show that it can manage to deliver results by itself.

125



126



CHAPTER 6

Conclusion

In this thesis, we proposed new algorithms to perform unsupervised clustering and suggested

new ideas for signal modeling, with a special focus on digital images. To this aim, we first

introduced the information k-means algorithm and developed its mathematical analysis. We

showed that it is a generalization of the classical Euclidean k-means criterion and demon-

strated its benefits for the clustering of bag of words. Then, based on the interpretation of

the information k-means setting as a density estimation framework, we introduced alterna-

tive bounded loss functions. Those criteria do not require any integrability assumptions on

the sample, and can be regarded as robust variants of the usual k-means loss function.

We put the information k-means algorithm into a broader context that we called infor-

mation fragmentation. On top of proving generalisation bounds, we justified this algorithm

from a data compression perspective, as it computes shorter indices for large and frequent

data blocks, similarly to the Lempel Ziv algorithm. We described fragmentation for signals

belonging to Rd. Although it covers the case of digital images, it is in fact much more

general, since we do not use pixel geometry through any kind of neighboring relations. More

precisely, the same fragments will be computed if we apply any given permutation to the

pixel indices of all the images of a given training sample. Thus, the fragmentation algorithm

can be applied to any kind of signal, color images, 3D images, video streams, speech and so

on.

The fragmentation algorithm is a lossy compression scheme that maps any signal consist-

ing in a vector of real valued measurements to a discrete representation consisting in a set of

fragment labels. This mapping is chosen to optimize the compression of a training sample.

Compression is then pushed further using our next proposal: a syntax analysis algorithm.

It is made of two stages: grouping and context analysis. The grouping stage performs

a lossless compression by merging pairs of labels that appear frequently. This relabeling

scheme produces new non terminal symbols and binary context free rewriting rules that we

can gather into a context free grammar. The signal representation is changed to a new set of

labels, containing non terminal super fragment labels that rewrite each into a unique set of

fragment labels. The context analysis stage consists in compressing the representation of the
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grammar through factoring and grouping of the rewriting rules. It produces a grammar of

the grammar made of new rewriting rules for new syntax labels. These syntax labels perform

some kind of context analysis drawn by a compression criterion. They induce a classification

of the super fragment labels into syntax categories. We get a new signal representation using

syntax categories. Repeating this scheme as long as we can increase the training sample

compression rate, we build a syntax tree producing a hierarchical unsupervised classification

of the content of each signal of the training set. Note that the whole scheme is guided by

a single criterion, the compression rate and uses essentially two ingredients, grouping and

factorization.

This is different from contextual modeling based on conditional probability measures,

whose estimation is a difficult statistical inference issue. The choice of a compression scheme

rather than a statistical model may be a way to avoid the curse of dimension as suggested by

Lemma 4 on page 37. This lemma relates our compression approach to a statistical estimator

whose generalization properties depend on the compression rate of the compression scheme.

The rest of our dissertation is devoted to the mathematical justification of the fragmen-

tation algorithm through generalization bounds. These generalization bounds characterize

the stability of the fragmentation, assessing that fragments computed from one training set

would work almost as well in expectation, and consequently would also work almost as well

to represent another independent training set.

Combining PAC-Bayesian lemmas with the kernel trick, we established dimension-free

non asymptotic bounds on the excess risk of both k-means, information k-means and in-

formation fragmentation. These bounds show that the fragmentation algorithm does not

overfit the data as long as
K2 S log

(
k/K

)

n

goes to zero, where k is the number of fragments K the maximum number of fragments used

to represent a single signal, and S is the total number of pixels of the fragments divided by

the number of pixels in one image.

We used the same line of proof to obtain generalization bounds of order

O

(
k log(k)

n

)1/4

for the classical k-means risk in a separable Hilbert space. In order to improve on the 1/4

exponent, we blended the chaining method and the PAC-Bayesian technology to get bounds

of order

O

(
log

(
n

k

)(
k log(k)

n

)1/2
)

for our various flavours of the k-means criterion, including the classical one and improving

in this case on the bound of order

O

(
k√
n

)
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proved in [BDL08].

Finally, we produced experimental results to show what the fragmentation algorithm

combined with syntax analysis is capable of, when applied to digital images. The experi-

ment, although preliminary, was very encouraging. First, we worked with 300× 300 images,

randomly drawn from two larger scenes, without suffering from the curse of dimension. Sec-

ond, we worked with a sample of size 200, showing that interesting things can be learnt even

from small training sets. Third, the algorithm was able to recognize (that is give the same

label to) patterns present in the two scenes ( a kitten’s head ) as well as translations of the

observation window. This fosters the hope to bring a generic solution to the problem of in-

variant pattern recognition, where invariance with respect to transformations is understood

in a loose sense, without the need to build specific methods dealing with a mathematically

well defined subset of pattern transformations.

All this of course is very preliminary. We wanted to transpose syntax analysis from texts

to signals, making a realistic proposal for unsupervised signal classification that could be

demonstrated on real data. To complete this, we had somehow to stop as soon as we got some

success at each step of our research, in order to keep some time to explore the next step. So

we are pretty sure everything can be improved. For instance, the optimization strategy both

in the fragmentation algorithm and in the syntax analysis is a one pass scheme: we build

smaller and smaller fragments, never coming back on past choices, and then build larger and

larger super fragments in the syntax phase, whereas it could be worth going up and down

more than one time. Also, we presented a batch algorithm, letting open the question of its

sequential pendent. Experimenting how the method scales on bigger data sets would also be

necessary. The relationship between compression and estimation that Lemma 4 on page 37

hints at would deserve a more precise study. The syntax analysis scheme we propose is a

crude first attempt, a more systematic investigation of the use of context free grammars to

build compression schemes should be possible.

The use of chaining in PAC-Bayesian bounds is another technical subject that calls for

further studies.

Further research may also include testing the method on other types of data, such as

speech, or combinations of different types of data, like video streams with sound.

Our agenda also includes coming back to natural language processing to test the pendent

of our syntax analysis algorithm for natural language processing. This would pave the way

to combined data analysis, such as images with textual comments.
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APPENDIX A

Code highlights

The syntax analysis is coded in R and C++, using the interface provided by the Rcpp

package, see [EF11] and [Edd13]. We used the Rcpp.package.skeleton() function, to

create our own R package. The advantage of this approach is that the communication

between R and C++ is made easier and the final code represents a self-contained R package,

thus easy to distribute, see [EF13] for more details concerning the creation of R packages with

Rcpp. Moreover, the C++ code is parallelized using OpenMP parallelization directives and

makes good use of an eight core processor as shown by the result of the linux htop command.

We give the code of the main C++ functions implementing the fragmentation algorithm,

to show how things can be done in practice, when the goal is only to compute the syntax

tree. The implementation of the rest of the syntax tree, that is the computation of the

pair labels and syntax labels, is quite similar. The main loop computeLoop() (line 5) runs

the split() function (line 25), that is defined on line 32. In order to take less memory,

variables and objects are passed to C++ via pointers, and all functions are of type void.

Notice before the definition of the computeLoop function, the typical Rcpp instruction // [[
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Rcpp :: export ]] that is required to make any compiled C++ function accessible into

the R environment. Besides, we adopt an object oriented programming approach creating

2 classes (similar to the struct data type in C) named Patches and mergeParam. For the

sake of clarity, we omit the description of the corresponding header file initialization.h

containing the declaration of the classes. The class Patches is associated with the fragmen-

tation step whereas the mergeParam is related to the merge and syntax analysis step. For

the purpose of brevity, we will only talk about the class Patches. This class is composed

of several attributes but more importantly contains the method split() that is called in

the critical loop. The first method is called after the instantiation of a Patches object

named parameters in the computeLoop function below. This method is used to initialize

the quantity α, mentioned in the introduction of the experiment. Then, comes the call of

the split() method which tries to find the pair {jk,1, jk,2} (noted max_i and max_j in the

code) maximizing the fragmentation criterion, as it is described in section 2.3 on page 29.

This is done essentially by computing the fragmentation criterion for each iteration but in a

parallel manner due to the compiler directive #pragma omp parallel for before the C++

for loop. As we already mentioned, this will distribute the computation of the criterion

over the different processors. We perform first the computation of the index jk,1 (max_i)

in a first loop and then jk,2 (max_j) in a second loop. As we discussed in section 2.3 on

page 29, this approach avoids the computation of the criterion over all the possible pairs Jk.

It is important to notice that we make use of the compiler directive #pragma omp crit-

ical twice. This compiler directive allows us to execute sequentially a block of code over

the different processors. This means that the block of code can only be executed by one

processor at a time. In our particular case, our critical block of code will be designed to

retrieve the maximum fragmentation criterion (noted max_crit in the code), as well as the

corresponding index jk each processor had to compute in his own set of iterations. This

provides us a way to reduce all the computations, performed separately over the processors,

into one single result. Let us also point out that max_crit as well as max_i and max_j are

global variables whereas my_max_crit, my_max_i and my_max_j are local variables private

to each processor. Then, the remaining of the code is a matter of updating the storage

of the criterion and the pair {jk,1, jk,2}, along with the matrices A and B representing the

sequences of sets Ak,j and Bk,j, j ∈ J1, kK. For an in-depth look at the code, the reader may

look at the GitHub repository https://github.com/GautierAppert/PatchProcess.

#include "initialization.h"

2

// [[Rcpp:: export ]]

4

void computeLoop (

6 NumericVector &m,

NumericVector &v,

8 NumericVector &w,

NumericVector &C,
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10 IntegerVector &A,

IntegerVector &B,

12 IntegerVector &Wsx ,

List &paramList)

14 {

int i, j;

16

// creates a Patches object to pass parameters from R

18 Patches parameters(m, v, w, C, A, B, Wsx , paramList);

20 parameters.computeBeta ();

paramList [" thresholdValue "] = parameters.thresholdValue;

22 // loop on patch index

for ( i = parameters.firstNewLabel - 1; i < parameters.

lastNewLabel; ++i )

24 {

parameters.split(i);

26 Rcout << "patch number " << i+1- parameters.shift << " computed

\n";

Rcout << "at iteration number " << i+1 << "\n";

28 }

parameters.output ();

30 Rcout << "betaCoeff = " << parameters.betaCoeff << "\n";

}

32 void Patches ::split(int iter) {

int i,j,s;

34 double m_buf , v_buf , weight_buf , square_buf , a, double_buf;

double crit , max_crit , Cmax_i , Cmax_j;

36 int max_i , count , max_j , int_buf;

38 // computes arg max C

max_crit = -1;

40 #pragma omp parallel private(i)

{

42 double my_max_crit = -1;

int my_max_i;

44 #pragma omp for

for (i=shift; i<iter -shift; ++i)

46 {

if ( my_max_crit < C[i] ) {

48 my_max_crit = C[i]; // selection according to the criterion

.

my_max_i = i;
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50 }

}

52 #pragma omp critical

{

54 if ( max_crit < my_max_crit ) {

max_crit = my_max_crit;

56 max_i = my_max_i;

}

58 }

}

60

if (max_crit < 0) {

62 Rcout << "Nothing to split any more.\nLast split = " << iter -

shift << "\n";

++shift;

64 return;

}

66

Rcout << "max_i = " << max_i + 1 << "\n";

68 // computes C for each j != max_i

max_crit = -1;

70 #pragma omp parallel private(j, count , s, weight_buf , crit , m_buf

, \

square_buf , v_buf)

72 {

double my_max_crit = -1;

74 int my_max_j;

#pragma omp for

76 for (j=shift; j<iter -shift; ++j)

{

78 if (j == max_i) continue; // we are looking for j != max_i

count = 0;

80 // compute the intersection between B_max_i and B_j.

for (s=0; s<d; ++s)

82 {

count += B[s+d*max_i] * B[s+d*j];

84 }

if (count == 0) continue;

86

// compute the sum of weights.

88 weight_buf = w[max_i] + w[j];

90 // compute the criterion for j.

crit = 0;
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92

// for each pixel do

94 // compute the criterion using the law of total variance.

for (s=0; s<d; ++s)

96 {

// Test if there is an intersection.

98 if (B[s+d*max_i]*B[s+d*j] == 0) continue;

100 // compute the mean of the mean.

m_buf = (w[max_i]*m[s+d*max_i]

102 + w[j]*m[s+d*j])/weight_buf;

square_buf = m[s+d*max_i] - m_buf;

104

// compute the variance of the means.

106 square_buf *= square_buf;

108 // compute the means of the variance.

v_buf = w[max_i] * ( v[s+d*max_i] + square_buf );

110 square_buf = m_buf - m[s+d*j];

square_buf *= square_buf;

112 v_buf += w[j] * ( v[s+d*j] + square_buf);

v_buf /= weight_buf;

114 if (v_buf < thresholdValue) {

crit += 1;

116 }

}

118 crit *= betaCoeff;

crit -= weight_buf;

120 if (my_max_crit < crit) {

my_max_crit = crit;

122 my_max_j = j;

}

124 }

126 // get our max_j.

#pragma omp critical

128 {

if (max_crit < my_max_crit) {

130 max_crit = my_max_crit;

max_j = my_max_j;

132 }

}

134 }
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136

if (max_crit < 0) {

138 #pragma omp parallel for private(s,double_buf ,int_buf)

for (s=0;s<d;++s)

140 {

double_buf = m[s+d*shift];

142 m[s+d*shift] = m[s+d*max_i];

m[s+d*max_i] = double_buf;

144 double_buf = v[s+d*shift];

v[s+d*shift] = v[s+d*max_i];

146 v[s+d*max_i] = double_buf;

int_buf = B[s+d*shift ];

148 B[s+d*shift] = B[s+d*max_i];

B[s+d*max_i] = int_buf;

150 }

double_buf = w[shift ];

152 w[shift] = w[max_i];

w[max_i] = double_buf;

154 double_buf = C[shift ];

C[shift] = C[max_i];

156 C[max_i] = double_buf;

#pragma omp parallel for private(i,int_buf)

158 for (i=0;i<n;++i)

{

160 int_buf = A[i+n*shift ];

A[i+n*shift] = A[i+n*max_i];

162 A[i+n*max_i] = int_buf;

}

164 ++shift;

return;

166 }

168 Rcout << "max_j = " << max_j + 1 << "\n";

C[iter -shift] = max_crit;

170 Cmax_i = Cmax_j = 0;

weight_buf = w[max_i] + w[max_j];

172

#pragma omp parallel for private(s, square_buf) reduction (+:

Cmax_i , Cmax_j)

174 for (s=0; s<d; ++s) // computes patch number iter

{

176

// compute patch mean using mean of m[s,i] and m[s,j].

178 m[s + d*(iter -shift)] = (w[max_i ]*m[s+d*max_i]
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+ w[max_j]*m[s+d*max_j ])/weight_buf;

180

square_buf = m[s + d*max_i] - m[s + d*(iter -shift)];

182 square_buf *= square_buf;

v[s+d*(iter -shift)] = w[max_i] * ( v[s+d*max_i] + square_buf );

184 square_buf = m[s+d*max_j] - m[s+d*(iter -shift)];

square_buf *= square_buf;

186 v[s+d*(iter -shift)] += w[max_j] * ( v[s+d*max_j] + square_buf);

v[s+d*(iter -shift)] /= weight_buf;

188

// Update A and B

190 // we need to compute the intersection

// and check that the variance is under thresholdValue.

192 if ( (B[s+d*max_i]*B[s+d*max_j] > 0) && (v[s+d*(iter -shift)]

< thresholdValue) )

194 {

B[s+d*(iter -shift)] = 1;

196 B[s+d*max_i] = 0;

B[s+d*max_j] = 0;

198 } else {

B[s+d*(iter -shift)] = 0;

200 }

if (B[s+d*max_i] > 0) {

202 Cmax_i += 1;

}

204 if (B[s+d*max_j] > 0) {

Cmax_j += 1;

206 }

}

208

C[max_i] = Cmax_i*betaCoeff - w[max_i ];

210 C[max_j] = Cmax_j*betaCoeff - w[max_j ];

w[iter -shift] = w[max_i] + w[max_j];

212 #pragma omp parallel for private(i)

for (i=0; i<n; ++i)

214 {

A[i+n*(iter -shift)] = A[i+n*max_i] + A[i+n*max_j];

216 }

return;

218 }
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APPENDIX B

Présentation générale

Dans cette thèse, nous cherchons à développer de nouveaux algorithmes pour la classification

non supervisée de signaux, en portant un intérêt particulier au cas des images numériques.

Le but de la classification non supervisée, telle que nous la concevons, est de proposer

différentes fonctions de classification, dans l’espoir que certaines d’entre elles pourront être

utiles en pratique.

Nous prendrons comme point de départ l’algorithme des k-means dans un espace Eu-

clidien. Etant donné un échantillon d’apprentissage (X1, . . . , Xn) ∈ Rd×n et k centres

ci, 1 ≤ i ≤ k, la perte empirique associée à l’algorithme des k-means est donnée par

L(c1, . . . , ck) =
1

n

n∑

i=1

min
j∈J1,kK

‖Xi − cj‖2 = inf
`:Rd→J1,kK

PX
(
‖X − c`(X)‖2

)
,

où P =
1

n

n∑

i=1

δXi représente la mesure empirique associée à l’échantillon. La perte empirique

est reliée à la perte théorique

inf
`:Rd→J1,kK

PX
(
‖X − c`(X)‖2

)
.

La première chose que nous allons entreprendre, à partir de là, est de voir ce que nous

obtenons en considérant le carré de la norme euclidienne comme la divergence de Kullback

de deux gaussiennes. Dans cette interprétation, on ajoute à la variable aléatoire X ∈ Rd

une seconde variable aléatoire Y telle que PY |X = N
(
X, σ2Id

)
où Id est la matrice identité

de taille d× d. On obtient que

‖X − c`(X)‖2 = 2σ2K
(
QY |X ,PY |X

)
,

où QY |X = N
(
c`(X), σ

2Id
)

= QY | `(X). Il est intéressant de considérer K
(
QY |X ,PY |X

)
au

lieu de K
(
PY |X , QY |X

)
qui sont égaux dans ce cas, du fait de la propriété suivante.

Proposition 48 Le critère des k-means euclidiens peut être considéré comme un critère

du type information k-means en raison de l’identité suivante

inf
c1,...,ck

PX
(
‖X − c`(X)‖2

)
= 2σ2 inf

Q
PX
[
K
(
QY | `(X),PY |X

)]
.
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Le point important ici est que nous n’avons pas à restreindre l’infimum à
{
Q : QY |X = N

(
c`(X), σ

2Id
)}
.

Proof. La preuve est une conséquence directe de la proposition 11 on page 45. �

Cette proposition montre que le critère quadratique des k-means est un cas particulier

du critère de type information k-means

inf
`:Rd→J1,kK

inf
Q
P
[
K
(
QY | `(X),PY |X

)]
,

et de son homologue empirique

inf
`:Rd→J1,kK

inf
Q
P
[
K
(
QY | `(X),PY |X

)]
.

Ce critère de type information k-means élargit la portée de l’algorithme des k-means de

la classification de vecteurs à la classification de distributions. Dans ce cas, l’ensemble

de données X1, . . . , Xn ∼ P⊗nX est remplacé par un ensemble de mesures de probabilités

conditionnelles pX1 , . . . , pXn .

Par exemple, dans le domaine de la fouille de textes, les histogrammes représentant la

fréquence des mots, appelés sacs de mots sont souvent utilisés pour représenter des doc-

uments. De même dans le domaine de la vision par ordinateur les images peuvent être

représentées par des histogrammes de caractéristiques visuelles. Il convient de noter que

les sacs de mots visuels sont souvent issus du résultat d’un algorithme de clustering util-

isé au préalable, typiquement l’algorithme des k-means appliqué à un ensemble de patches

d’images pour créer un dictionnaire de caractéristiques locales. Pour plus de détails, on peut

se référer à [Tsa12].

Dans le cadre de l’information k-means, on essaie d’approcher PY |X par QY | `(X). Ceci

est une invitation à considérer comme variante de la même idée l’approximation de la dis-

tribution jointe PX,Y par QX,Y telle que QY |X = QY | `(X).

D’après le théorème de désintégration, on note que

K
(
QX,Y ,PX,Y

)
= K

(
QX ,PX

)
+QX

[
K
(
QY |X ,PY |X

)]
.

Ainsi, considérant plus spécifiquement le modèle

Q =
{
QX,Y : QX = PX , QY |X = QY |`(X), `(X) ∈ {1, . . . , k}

}
,

l’information k-means peut être exprimé comme une projection appelée information projec-

tion

inf
QX,Y ∈Q

K
(
QX,Y ,PX,Y

)
= inf

`:X 7→J1,kK
inf

QY |`(X)∈M1
+(Y)

PX

[
K
(
QY |`(X),PY |X

)]
.

L’information projection, aussi appelée I-projection [Csi75], consiste à projeter une mesure

de probabilités P sur un ensemble Q de distributions de probabilités, en résolvant

inf
Q∈Q

K
(
Q,P

)
.
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Ce concept apparâıt également dans le théorème de Sanov [Csi84] qui fournit une borne sur

la probabilité que la mesure empirique Pn appartienne à un ensemble de distributions de

probabilités Q, soit de manière informelle

− log
(
P⊗

n

X

(
Pn ∈ Q

))
∼ n inf

Q∈Q
K
(
Q,PX

)
.

La différence entre l’estimation par maximum de vraisemblance, qui peut être écrite comme

θ̂MLE ∈ arg min
θ∈Θ

K(Pn, Qθ), (B.1)

au moins lorsque l’espace d’états est fini, et la I-projection réside dans le fait que la divergence

de Kullback Leibler n’est pas symétrique. En d’autres termes, l’estimation par maximum

de vraisemblance a tendance à surestimer le support de la distribution des données, tandis

que la I-projection a tendance à la sous-estimer. La différence en termes d’estimation du

support est très bien illustrée dans le cas gaussien dans [Bis06], figure 10.2 et 10.3, chap 10.

D’ailleurs, on peut voir que (B.1) équivaut à la maximisation de l’espérance d’une fonction

de perte

θ̂MLE ∈ arg max
θ∈Θ

Pn

(
log
(dQθ

dν

))
,

où ν est une mesure dominante (Qθ � ν, pour tout θ ∈ Θ), alors que sa contrepartie

théorique s’écrit

θ∗MLE ∈ arg max
θ∈Θ

P

(
log
(dQθ

dν

))
.

De la même manière, nous proposerons une fonction de perte pour l’estimation du paramètre

de classification ` : X 7→ J1, kK équivalant à la minimisation du critère de l’information k-

means. En effet, à partir du lemme 1 et du lemme 6, on peut remarquer que

inf
QX,Y :QY |X=QY |`(X)

K
(
QX,Y ,PX,Y

)
= − log sup

QX,Y :QY |X=QY |`(X)

{
PX

[
exp
(
−K

(
QY | `(X),PY |X

))]}
.

Cela montre que la minimisation du critère de l’information k-means est liée à la min-

imisation de l’espérance d’une fonction de perte γ`(X)

`∗ ∈ arg min
`:X7→J1,kK

PX
(
γ`(X)

)
, (B.2)

où γ`(X) = 1 − exp
(
−K

(
QY | `(X),PY |X

))
. Cette fonction de perte est complètement

observée (nous supposons que PY |X est connue) et joue le rôle de log
(dQθ

dν

)
dans l’approche

par maximum de vraisemblance.

Notez que la fonction de perte γ`(X) appartient à l’intervalle [0, 1], puisque la divergence

de Kullback est toujours positive. Par la même occasion, nous étudierons l’excès de risque

PX
(
γ̂̀(X)

)
− PX

(
γ`∗(X)

)
,

où
̂̀∈ arg min

`:X 7→J1,kK
PX
(
γ`(X)

)
.
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De plus, l’information projection apparâıt dans de nombreux algorithmes d’apprentissage au-

tomatique, notamment dans les méthodes variationnelles bayésiennes (VB) pour l’inférence

bayésienne. En effet, les méthodes VB essaient d’approcher une distribution a posteriori

par I-projection sur une famille donnée de distributions. Ces méthodes représentent une

alternative aux méthodes de Monte Carlo par châınes de Markov qui sont généralement plus

lentes. On pourra se référer à [Bis06], [BKM17], [AR20] et [ARC16] pour plus de détails

sur ce sujet. Il s’avère que les méthodes VB représentent également un outil attrayant pour

le clustering non supervisé, en particulier pour le calcul des auto-encodeurs variationnels

(VAE), voir [Doe16] pour une revue complète sur le sujet. Cela apparâıt également dans

les auto-encodeurs variationnels pour graphe permettant d’effectuer du clustering de noeuds

dans un graphe, voir [Sal+19b] et [Sal+19a].

Il convient de souligner que le clustering de distributions de probabilités (condition-

nelles) utilisant la divergence de Kullback comme mesure de similarités ou d’autres critères

d’information n’est pas un nouveau sujet. Cela a été très largement utilisé pour labelliser

des documents, et en particulier pour le clustering de mots permettant d’extraire des car-

actéristiques ou bien de réduire la dimension de l’espace sous-jacent. Par exemple, [PTL02]

introduit ce qu’il appelle le clustering distributionnel consistant à regrouper les noms d’un

texte par rapport à la distribution conditionnelle du verbe sachant le nom. Le regroupe-

ment est effectué en mesurant la divergence de Kullback entre les distributions condition-

nelles sachant les noms et les centröıdes des distributions associés. La distribution centröıde

est définie comme une moyenne intra-cluster de distributions conditionnelles minimisant la

moyenne de la divergence de Kullback.

Cependant, dans le cas de l’information k-means, nous suivrons une approche différente.

Nous effectuons le regroupement en minimisant la divergence de Kullback par rapport à

son premier argument, ce qui conduit à des centröıdes très différents, calculés comme des

moyennes géométriques de distributions conditionnelles. Cela représente à notre connais-

sance une nouveauté par rapport à la littérature existante.

Le regroupement des distributions conditionnelles dans [PTL02] est une version partic-

ulière d’un problème plus général appelé information bottleneck, voir [TPB01]. Dans la suite,

nous verrons que l’information k-means est en fait une variante d’un problème de clustering

plus général appelé information fragmentation.

Par ailleurs, dans [Dhi+03], les auteurs proposent un algorithme du type k-means qui

diminue une fonction de perte basée sur l’entropie de Jensen-Shannon, exprimée aussi comme

une perte d’information mutuelle, conduisant à des centröıdes définis comme des moyennes

pondérées de distributions conditionnelles.

En particulier, ils montrent que leur critère d’entropie peut s’exprimer comme un critère

de type k-means utilisant la divergence de Kullback comme mesure de distorsion. Plus
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formellement, leur critère s’écrit sous la forme

inf
`:Q→J1,kK

inf
q1,...,qk

k∑

j=1

∑

i∈`−1(j)

πiK(pi, qj),

où Q est un ensemble de distributions de probabilités discrètes et πi > 0 représente certains

poids associés à la distribution pi.

On peut remarquer ici que les centröıdes sont calculés en minimisant la divergence de

Kullback par rapport au deuxième argument, de sorte que cela conduit à calculer les cen-

tröıdes comme

q∗j =
∑

i∈`−1(j)

πi pi∑
i∈`−1(j) πi

,

avec ` fixé et calculer la meilleure fonction de classification comme

`∗(i) = arg min
j∈J1,kK

K(pi, q
∗
j ).

De la même manière, [Cao+13] et [Wu12] sont allés plus loin dans cette direction, en étudiant

ce qu’ils appellent Info K-means. En particulier, [Cao+13] propose un nouvel algorithme

pour traiter les problèmes computationnels engendrés par l’Info K-means, en particulier les

problèmes qui découlent du calcul de la divergence de Kullback en grande dimension. Ils

ont appliqué cet algorithme pour faire du clustering d’images numériques représentant 11

paysages différents. Ils ont préalablement prétraité les images en extrayant des caractéris-

tiques visuelles et en quantifiant ces caractéristiques, afin de considérer chaque image comme

un sac de mots visuels. Ensuite, ils ont regroupé les images en utilisant l’Info-K means en

prenant K = 11 et ont obtenu des résultats prometteurs en retrouvant la partition d’origine

donnée par les types de paysages. Il convient de préciser que lorsque nous effectuerons

nos expériences, nous n’utiliserons aucune étape de prétraitement sur l’échantillon telle que

la sélection de caractéristiques par une méthode de quantification vectorielle. Nous appli-

querons directement l’algorithme de l’information fragmentation sur les images numériques

originales et cela représente un point fort de notre approche. En outre, on se réfèrera aussi

à [Jia+11], qui propose un Algorithme de k-médöıdes pour diminuer une perte du type k-

means avec comme mesure de distorsion la divergence de Kullback dans le cas discret et

continu, et fournit en plus un estimateur de la divergence de Kullback dans le cas continu.

En utilisant les idées de [Dhi+03], [BDG04] présentent un cadre général des k-means basé

sur la divergence de Bregman. Les auteurs montrent que ces critères peuvent être minimisés

de manière itérative. La distance de Bregman englobe de nombreuses mesures de distor-

sion telles que la distance euclidienne, la divergence de Kullback, la perte logistique et bien

d’autres. Cependant, dans le cas de Kullback, la minimisation est effectuée par rapport au

second argument, et non au premier comme dans notre cas.

Pour en revenir à l’information k-means, nous avons vu que si nous choisissions librement

la distribution QX à la place de PX , nous obtenions la fonction de perte bornée donnée par
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l’équation (B.2). Dans le cas quadratique, on obtient le critère

inf
`
PX

[
1− exp

(
− 1

2σ2
‖X − c`(X)‖2

)]
= PX

[
1− exp

(
− 1

2σ2
min
j∈J1,kK

‖X − cj‖2
)]
.

Nous verrons que nous pourrons établir des bornes de généralisation pour ce type de critères

robustes sous des hypothèses beaucoup plus faibles que celles imposées par notre premier

critère.

Jusqu’à présent, nous avons décrit l’extension des k-means euclidiens au cadre de l’infor-

mation k-means. La prochaine extension dont nous aimerions parler est celle des k-means

à l’information fragmentation. Dans le cas des k -means, nous utilisons un centre/centroide

dans Rd pour représenter des points voisins. Ce type de classification manque de finesse.

On ne s’attend pas vraiment à ce que des images entières (ou plus généralement des signaux

entiers) soient semblables. On aimerait plutôt étiqueter des parties d’images. Cela peut

se faire en étiquetant les pixels de chaque image avec des étiquettes différentes, produisant

une fragmentation de chacune des images en différentes zones. Dans le cadre habituel des

k-means quadratiques, nous proposons d’approcher X par

Y =
∑

j∈AX

cj, où J1, dK =
⊔

j∈AX

supp
(
cj
)
.

Ici AX remplace `(X) et contient les étiquettes des composantes du signal X ∈ Rd. Ce cadre

peut être vu comme une généralisation des k-means euclidiens classiques correspondant à

AX =
{
`(X)

}
. Le critère quadratique devient

PX

(∥∥X −
∑

j∈AX

cj
∥∥2
)
.

En introduisant les projecteurs orthogonaux πj sur le sous-espace vectoriel engendré par le

support de cj, on peut réécrire le critère comme

PX

(∑

j∈AX

∥∥πj(X)− cj
∥∥2
)

=
k∑

j=1

PX

(
1
(
X ∈ Aj

)∥∥πj(X)− cj
∥∥2
)
,

où Aj = {x ∈ Rd : j ∈ Ax}.

Pour décrire l’information fragmentation en terme d’information projection nous devons

introduire une nouvelle variable aléatoire S qui décrit l’emplacement du pixel. Plus précisé-

ment, nous remplaçons la représentation Y de X par deux variables aléatoires S ∈ J1, dK et

V ∈ R, définies par

PS |X =
1

d

d∑

j=1

δj and PV |X,S=j = N
(
Xj, σ

2
)
.

Ceci étant dit, nous pouvons décrire le critère quadratique des k-means comme

inf
Q
PX,S

[
K
(
QV |S, `(X),PV |S,X

)]
,
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tandis que le critère d’entropie globale est

inf
Q:QS, V |X=PSQV |S,`(X)

K
(
QX,S, V ,PX,S, V

)

= − log sup
Q:QS,V |X=PSQV |S, `(X)

{
PX

[
exp
(
−K

(
QS, V |`(X),PS, V |X

)]}
.

Pour obtenir le critère de fragmentation quadratique, on a juste besoin d’étendre la fonction

de classification ` en la faisant dépendre aussi de S, l’emplacement du pixel. On obtient

inf
Q
PX,S

[
K
(
QV |S, `(X,S),PV |X,S

)]
.

Le critère d’entropie globale correspondant est

inf
Q :QS, V |X, `(X,S)=QS, V | `(X,S)

K
(
QX,S, V ,PX,S, V

)
.

Il possède les propriétés intéressantes suivantes

Proposition 49 (Critère de fragmentation global) Considérons k centres ρj ∈
M1

+

(
Rd
)
, 1 ≤ j ≤ k. Définissons

T2 =
{
B ⊂ J1, kK : ρi ⊥ ρj, i 6= j ∈ B

}
,

l’ensemble des pavages (éventuellement partiels) par des mesures de probabilités mutuelle-

ment singulières ρj. Le minimum partiel

inf
Q

K
(
QX,S, V ,PX,S, V

)

portant sur toutes les mesures de probabilités Q, telles qu’il existe une fonction mesurable

` : Rd × J1, dK→ J1, kK telle que

Q
[
QX |S, V, `(X,S) = ρ`(X,S)

]
= 1 (B.3)

est égal à

− sup
`

logPS

(
k∑

j=1

1
[
ρj
(
`−1
S (j)

)
= 1
]

exp
[
−K

(
ρj,PX |S

)
−Varρj

(
XS

)
/(2σ2)

])

= − logPS

(
sup
B∈T2

∑

j∈B

exp
[
−K

(
ρj,PX |S

)
−Varρj

(
XS

)
/(2σ2)

])
,

où

`s : Rd → J1, kK

x 7→ `(x, s).

Pour tout choix de `, et en particulier pour le choix optimal, considérant W = `(X,S),

l’optimum en QW,S, V est atteint quand

dQW,S, V

dPW,S ⊗ λV
= Z−1 exp

[
−K

(
ρW ,PX |W,S

)
−VarρW

(
XS

)
/(2σ2)

]
gσ, ρW (XS)(V ), (B.4)
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où λV est la mesure de Lebesgue sur R et

gσ,m(v) =
1

σ
√

2π
exp

(
− (v −m)2

2σ2

)
.

En particulier, pour le choix optimal de QW,S, V , QV |S,W = N
(
ρW (XS), σ2

)
est une mesure

de probabilités gaussienne et

dQS |W

dPS |W
= Z−1

W exp
[
−K

(
ρW ,PX |W,S

)
−VarρW (XS)/(2σ2)

]
.

D’autre part, considérons k centres µ
(j)
S, V ∈M1

+

(
J1, dK×R

)
, 1 ≤ j ≤ k tels que

µ
(j)
V |S = N

(
µ

(j)
V |S(V ), σ2

)
, 1 ≤ j ≤ k.

Définissons

T1 =
{
A ⊂ J1, kK : µ

(i)
S ⊥ µ

(j)
S , i 6= j ∈ A

}
,

l’ensemble des pavages par des mesures de probabilités mutuellement singulières µ
(j)
S (ou de

manière équivalente par des probabilités mutuellement singulières µ
(j)
S, V ).

Le minimum partiel

inf
Q

K
(
QX,S, V ,PX,S, V

)

pris sur toutes les mesures de probabilités Q ∈ M1
+

(
Ω
)

telles que, pour une fonction

mesurable ` : Rd × J1, dK→ J1, kK,

Q
[
QS, V |X, `(X,S) = µ

(`(X,S))
S, V

]
= 1, (B.5)

est égal à

− sup
`

logPX

(
k∑

j=1

1
[
µ

(j)
S

(
`−1
X (j)

)
= 1
]

× exp
{
−K

(
µ

(j)
S ,PS |X

)
− µ(j)

S

[(
µ

(j)
V |S(V )−XS

)2

/(2σ2)
]})

= − logPX

(
sup
A∈T1

∑

j∈A

exp
{
−K

(
µ

(j)
S ,PS |X

)
− µ(j)

S

[(
µ

(j)
V |S(V )−XS

)2

/(2σ2)
]})

,

où

`x : J1, dK→ J1, kK

s 7→ `(x, s).

Pour toute valeur de `, et en particulier pour la valeur optimale, considérant W = `(X, S),

le minimum en QX,W est atteint quand

dQX,W

dPX,W
= Z−1 exp

{
−K

(
µ

(W )
S ,PS |X,W

)
− µ(W )

S

[(
µ

(W )
V |S(V )−XS

)2

/(2σ2)
]}
. (B.6)
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En alternant ces deux opérations d’optimisation partielle, nous pouvons converger vers un

minimum local du problème d’optimisation

inf
Q

K
(
QX,S, V ,PX,S, V

)
,

où l’infimum est pris sur les mesures de probabilités Q ∈ M1
+

(
Ω
)

satisfaisant, pour une

fonction de classification mesurable ` : Rd × J1, dK→ J1, kK,

Q
[
QX,S, V | `(X,S) = QX | `(X,S) ⊗QS, V | `(X,S)

]
= 1. (B.7)

Pour la preuve, voir la proposition 16. La seconde partie de la proposition montre que

le critère d’entropie peut être interprété comme l’espérance par rapport à PX d’un risque.

Cette espérance peut être estimée par une espérance par rapport à la mesure empirique PX .

La dernière partie de la proposition décrit le pendant de l’algorithme de Lloyd, dans le cas

où on remplace la mesure inconnue PX par la mesure empirique PX .

Maintenant que nous avons un critère pour la fragmentation, nous avons besoin d’un

algorithme exploitant ce critère.

Nous utiliserons le critère

inf
Q

K
(
QX,S, V ,PX,S, V

)
,

pour définir une fonction de distorsion. Soit X1, . . . , Xn un échantillon d’apprentissage i.i.d.

Nous pouvons représenter son contenu par la distribution

PI, S, V =

(
1

n

n∑

i=1

δi

)
PS, V |X=XI

=

(
1

n

n∑

i=1

δi

)(
1

d

d∑

j=1

δj

)
N
(
XI,S, σ

2
)

=
1

nd

n∑

i=1

d∑

j=1

δi,j N
(
Xi,j, σ

2
)
.

Ici I est un indice aléatoire à valeurs dans l’intervalle J1, nK. Nous voyons immédiatement

que (X1, . . . , Xn) est une fonction de P, puisque

Xi,s = PV |S=s, I=i(V ), i ∈ J1, nK, s ∈ J1, dK.

Considérons un dictionnaire fini C ⊂ R, par exemple C =
{
m2−8 : m ∈ J0, 255K

}
qui

permet de coder des intensités lumineuses à valeurs dans l’intervalle unité [0, 1] sur huit bits

comme c’est souvent le cas. Pour toute fonction de classification

` : J1, nK× J1, dK −→ J1, kK

définie par

`−1(j) = Aj ×Bj, 1 ≤ j ≤ k,
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où (Aj × Bj, 1 ≤ j ≤ k) est une partition de J1, nK × J1, dK et toute famille de centres

(Cj, 1 ≤ j ≤ k) ∈ Cd×k, où supp(Cj) ⊂ Bj, définissons le paramètre

θ = (Aj, Bj, Cj)
k
j=1

et le modèle correspondant

Qθ =
{
QI, S, V ∈M1

+

(
J1, nK× J1, dK×R

)

: QS, V | I, (I,S)∈Aj×Bj = PS |S∈BjN
(
Cj, S, σ

2
)
, j ∈ J1, kK

}
,

où nous rappelons que PS = 1
d

∑d
s=1 δs est connu et est la mesure uniforme sur l’emplacement

des pixels. Pour faire un parallèle entre Qθ et le modèle (B.5) défini dans la proposition 49,

on peut remarquer que Qθ détermine

µ
(j)
S = PS |S∈Bj et µ

(j)
V |S = N

(
Cj, S, σ

2
)
.

En d’autres termes, Qθ ⊂ Q`, où

Q` =
{
QI, S, V ∈M1

+

(
J1, nK× J1, dK×R

)
: QI, S, V | `(I,S) = QI | `(I,S) ⊗QS, V | `(I,S)

}
.

Nous définissons la distorsion D(θ) de la représentation de l’échantillon (X1, . . . , Xn) par

le paramètre θ comme

D(θ) = inf
Q∈Qθ

{
K
(
QI, S, V ,PI, S, V

)}

= − logPI

(
k∑

j=1

1(I ∈ Aj)PS(Bj) exp
{
− 1

2σ2
PS |S∈Bj

[(
XI, S − YI, S

)2
)]})

,

conformément à la proposition 49.

Notons que cela fait sens d’optimiser en Q ∈ Qθ, puisque la quantification de Xi, donnée

par

Yi,s = QV |S=s,I=i(V ) =
k∑

j=1

1(i ∈ Aj)Cj,s, 1 ≤ i ≤ n, 1 ≤ s ≤ d,

ne dépend pas de Q ∈ Qθ, mais seulement de θ. En fait, elle ne dépend pas de QI,S si bien

que nous aurions pu optimiser encore plus dans la définition de D(θ).

Remarquons que cette notion de distorsion satisfait

inf
Q∈Q`

K
(
QI, S, V ,PI, S, V

)
≤ D(θ) ≤ PI, S

[(
XI, S − YI, S

)2
]

=
1

nd
‖Xn

1 − Y n
1 ‖2.

Etant donnée une distribution de codage q(θ) et un niveau de distorsion acceptable η ≥ 0,

l’algorithme de fragmentation calcule une représentation avec perte θ̂(X1, . . . , Xn) dont la

distorsion vérifie D(θ̂) ≤ η et dont la longueur de code idéale − log
(
q(θ̂)

)
est aussi faible

que possible.
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Nous utiliserons une probabilité de codage de la forme

q(θ) = q(A,B,C) = q(A) q(B,C).

A la suite de cette étape de fragmentation, conduisant au calcul de θ̂, nous effectuerons

une analyse syntaxique visant à remplacer le code idéal q(A) par un code plus efficace

q̃(A). Cette amélioration suit l’approche bayésienne de Shtarkov. Plus précisément, nous

considérons une famille qα(A) de distributions de codage dépendant d’un nouveau paramètre

α et d’une loi a priori µ(α), et nous améliorons q(A) en considérant

q̃(A) = max
α

µ(α)qα(A).

Comme

q(A) =
∑

α

µ(α)qα(A)

est une mesure de probabilités, q̃ est une sous-probabilité, et donc une mesure de codage

valide. D’un point de vue bayésien, q̃(A) peut aussi être considéré comme un estimateur du

maximum de vraisemblance a posteriori (MAP). Introduisons

α̂ ∈ arg max
α

µ(α)qα(Â).

Nous voyons que q̃(Â) = µ(α̂)qα̂(Â) et que α̂ est une fonction de l’échantillon (X1, . . . , Xn),

puisque c’est le cas de Â. Quand nous détaillerons la construction de α̂ nous verrons que

nous effectuons une forme d’analyse syntaxique conduisant en particulier au calcul d’un

arbre syntaxique pour chaque image Xi, 1 ≤ i ≤ n de l’échantillon.
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Titre : Information k-means, fragmentation et analyse syntaxique. Une nouvelle approche de l’apprentissage
non supervisé.

Mots clés : Apprentissage non supervisé, Classification, Compression de données, bornes PAC-
Bayésiennes, Chaı̂nage, Critère des k-means.

Résumé : Le critère de l’information k-means étend le
critère des k-means en utilisant la divergence de Kull-
back comme fonction de perte. La fragmentation est une
généralisation supplémentaire permettant l’approximation
de chaque signal par une combinaison de fragments.
Nous proposons un nouvel algorithme de fragmentation
pour les signaux numériques se présentant comme un al-
gorithme de compression avec perte.
A l’issue de ce traitement, chaque signal est représenté par
un ensemble aléatoires de labels, servant d’entrée à une
procédure d’analyse syntaxique, conçue comme un algo-
rithme de compression sans perte.
Cet algorithme, fondé sur deux principes appliqués
itérativement, la factorisation et le réétiquetage de confi-
gurations fréquentes, produit pour chaque signal un arbre
syntaxique fournissant une classification hiérarchique des
composantes du signal.
Nous avons testé la méthode sur des images en niveaux de
gris, sur lesquelles il a été possible de détecter des configu-
rations translatées ou transformées par une rotation. Ceci
donne l’espoir d’apporter une réponse à la reconnaissance
invariante par transformations fondée sur un critère de com-

pression très général.
D’un point de vue mathématique, nous avons prouvé deux
types de bornes. Tout d’abord, nous avons relié notre al-
gorithme de compression à un estimateur implicite d’un
modèle statistique lui aussi implicite, à travers un lemme,
prouvant que le taux de compression et le niveau de dis-
torsion de l’un sont reliés à l’excès de risque de l’autre. Ce
résultat contribue à expliquer la pertinence de nos arbres
syntaxiques.
Ensuite, nous établissons des bornes de généralisation non
asymptotiques et indépendantes de la dimension pour les
différents critères des k-means et critères de fragmenta-
tion que nous avons introduits. Nous utilisons pour cela des
inégalités PAC-Bayésiennes appliquées dans des espaces
de Hilbert à noyau reproduisant.
Par exemple dans le cas des k-means classiques, nous
obtenons une borne en O(k log(k)/n)1/4 qui fournit la
meilleure condition suffisante de consistance, à savoir
que l’excès de risque tend vers zéro quand k log(k)/n
tend vers zéro. Grâce à une nouvelle méthode de
chaı̂nage PAC-Bayésien, nous prouvons aussi une borne
en O(log(n/k)

√
k log(k)/n).

Title : Information k-means, fragmentation and syntax analysis. A new approach to unsupervised machine
learning.

Keywords : Unsupervised machine learning, Clustering, Data compression, PAC-Bayesian bounds, Chaining,
k-means criterion

Abstract : Information k-means is a new mathematical fra-
mework that extends the classical k-means criterion, using
the Kullback divergence as a distortion measure. The frag-
mentation criterion is an even broader extension where
each signal is approximated by a combination of fragments
instead of a single center.
Using the fragmentation criterion as a distortion measure,
we propose a new fragmentation algorithm for digital si-
gnals, conceived as a lossy data compression scheme.
Based on the output of the fragmentation algorithm, where
each signal is described as a random set of labels, we des-
cribe a new syntax model, conceived as a lossless data
compression scheme.
Our syntax analysis is based on two principles : factorization
and relabeling of frequent patterns. It is an iterative scheme,
decreasing at each step as much as possible the length of
the representation of the training set. It produces for each
signal a syntax tree, providing a multi-level classification of
the signal components.
We tested the method on grey level digital images, where
it was possible to label successfully translated patterns and
rotated patterns. This lets us hope that transformation inva-

riant pattern recognition could be approached in a flexible
way using a general purpose data compression criterion.
From a mathematical point of view, we derived two kinds
of generalization bounds. First we defined an implicit esti-
mator based on an implicit statistical model, related to our
lossy data compression scheme. We proved a lemma re-
lating the data compression rate and the distortion level of
the compression algorithm with the excess risk of the statis-
tical estimator. This explains why our syntax trees may be
meaningful.
Second, combining PAC-Bayesian lemmas with the kernel
trick, we proved non asymptotic dimension-free generaliza-
tion bounds for the various information k-means and infor-
mation fragmentation criteria we introduced.
For instance, in the special case of the classical k-means
criterion, we get a non asymptotic dimension free generali-
zation bound of order O(k log(k)/n)1/4 that gives the best
sufficient consistency condition, namely that the excess risk
goes to zero when k log(k)/n goes to zero. Using a new
kind of PAC-Bayesian chaining, we also proved a bound of
order O(log(n/k)

√
k log(k)/n).

Institut Polytechnique de Paris
91120 Palaiseau, France


	General notation
	Introduction
	Overview
	General ideas
	Generalization bounds for fragmentation
	Description of the signal fragmentation algorithm
	Syntax analysis
	Relation with statistical estimation

	Information k-means and information fragmentation algorithms
	Information k-means algorithms
	Information fragmentation
	Recall of the information k-means setting
	First generalization: estimating a joint distribution
	Information fragmentation

	Signal fragmentation

	PAC-Bayesian bounds for information k-means and information fragmentation
	A PAC-Bayesian bound for information k-means
	Explicit bound in the information k-means setting
	Classical k-means quantization in a separable Hilbert space
	Discussion about the bounds

	A bounded criterion for information k-means
	A bounded criterion for the Euclidean k-means
	PAC-Bayesian bounds for information fragmentation
	Faster bounds
	Faster bounds for information k-means and classical k-means
	Faster bounds for both the bounded information k-means and the bounded k-means criterion
	Faster bounds for information fragmentation


	Experiment on digital images
	Conclusion
	Code highlights
	Présentation générale
	References

