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Purpose

Given a sample X1, . . . ,Xn

of n independent copies of a signal X ∈Rd (we will focus on digital
images), we want to produce a better representation of its content.
We want to

1 identify significant patterns
2 represent their interactions

We propose to
1 perform some vector quantization of image fragments
2 compute syntax trees for the quantized fragments

both steps being based on a data compression criterion (performing lossy
coding in the first step and lossless coding in the second one).
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In the large sample limit we can recover the signal distribution

Let X = (X1, . . . ,Xn) ∈Rnd and let θ(X ) be a (lossy) binary prefix code
for X (we code the whole sample X , not a single random image X ).
Let Y = f

[
θ(X )

]
be the lossy decoding of X from its binary

representation θ(X ).
Assume that

∥∥Y −X
∥∥2 ≤ ndα, for some distortion level α > 0.

Introduce a coding distribution Qθ . Assume that
QY = Qθ ◦ f −1 = Qf (θ) is exchangeable.
Consider a blurred version of the sample X defined as
V = (V1, . . . ,Vn) = X + W , where W is independent of the sample X
and distributed as N

(
0,σ2Ind

)
.

Define QV from QY , setting QV |Y = N
(
Y ,σ2Ind

)
.
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Generalization bound

Lemma : The progressive estimator

QVn |V1,...,Vn−1 = 1
n

n

∑
i=1

QVn |V1,...,Vi−1

is such that

1
dPV1,...,Vn−1

[
K
(
PVn ,QVn |V1,...,Vn−1

)]
≤ 1

nd K
(
Pθ ,Qθ

)
+ α

2σ2 .

The estimator Q is successful at approaching PV when Qθ is a successful
data compression scheme for the source Pθ = P

θ(X). Moreover Q is a
function of Qθ , so that Qθ contains in this case enough information to
characterize PV that is itself an approximation of PX .
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Explanations: statistical estimation without statistical modeling

{
statistical models

}
 
{
compression models

}
. . . and both can

produce estimators, according to the previous lemma.
Namely, if we use a parametric model {Qθ |β}, hoping that
infβ K

(
Pθ ,Qθ |β

)
is small and if we set Qθ =

∫
Qθ |β dµ(β ) for some

prior probability measure µ on the parameter β , the lemma produces a
statistical estimator Q from a statistical model {Qθ |β}.
But we can choose Qθ otherwise, and in particular we can use a
grammar based code. The general principle is to define small binary
indexes for repeated large patterns and to gather those possibly nested
indexation rules into a grammar. A widely used grammar based code is
the Lempel Ziv algorithm. We will propose a more evolved choice of
grammar producing syntax trees related to the conditional probability
of observing some selected patterns in a given context.
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Expected benefits

1 Grammar based compression can process in a meaningful way
infrequent patterns : even seen in the sample only twice, a large
pattern is worth being indexed by a small index and described only
once. On the other hand a statistical estimator, based on the
estimation of expectations, cannot take into account in a reliable way
an event that occurs only twice in the sample.

2 A parametric model Qθ |β that accounts for elaborate conditional
independence assumptions will presumably depend on a
high-dimensional parameter β , and estimation in high dimension
requires huge samples unless the complexity is restricted in some other
way.

For those two reasons, we hope to make sense of small samples compared
to a more traditional statistical approach.
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First lossy compression step : fragmentation

Let C⊂R be finite (or more generally countable). For instance
C = J0,255K.
We code the sample X = (X1, . . . ,Xn) ∈Rnd by

θ =
[(

Ai ⊂ J1,kK, 1≤ i ≤ n
)
,
(
Bj ⊂ J1,dK,Cj ∈ CBj , 1≤ j ≤ k

)]
,

where Ai ∈ TB =
{

A⊂ J1,kK :
⊔
j∈A

Bj = J1,dK
}
,

the lossy decoding function being

f (θ) = Y =
(

CAi , 1≤ i ≤ n
)
, where CA = ∑

j∈A
Cj ,

and where Cj is set to 0 outside its support Bj .
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Distortion and k-means

The distortion D(X ,θ) = (nd)−1‖X −Y ‖2 is minimized for a given set
of fragments (B,C) when Ai ∈ arg min

A∈TB
‖Xi −CA‖ and is then equal to

D(X ,B,C) = inf
A∈Tn

B
D
(
X ,(A,B,C)︸ ︷︷ ︸

θ

)
= d−1PX

(
min
A∈TB

∥∥X −CA
∥∥2
)
,

where PX = 1
n

n

∑
i=1

δXi is the empirical measure.

We see that the distortion is a generalization of the k-means empirical
criterion, that we get when Bj = J1,dK, j ∈ J1,kK.
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Principle of a fragmentation algorithm

Create a sequence of codes θk = (Ak ,Bk ,Ck),k ≥ n.
Start with one fragment per image: k = n, An,i = {i}, i ∈ J1,nK,
Bn,j = J1,dK, Cn,j,s = arg min

c∈C
|Xj,s − c|, j ∈ J1,kK.

Maintain through iterations on k the two properties
D(X ,θk)≤ α

and J1,dK =
⊔

j∈Ak,i

Bk,j , i ∈ J1,nK,

while minimizing the code length of θk at each step.
Stop when it is no more possible to decrease the code length of θk or
earlier for a partial fragmentation.
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The fragmentation loop

Iterate on k ≥ n the following.
Choose a pair Jk ⊂ J1,kK,
set Ak+1,i = Ak,i ∪{k +1} if Ak,i ∩Jk 6=∅,Ak+1,i = Ak,i otherwise,
choose a support Bk+1,k+1 ⊂

⋂
j∈Jk

Bk,j ,

set Bk+1,j = Bk,j \Bk+1,k+1 if j ∈ Jk , and Bk+1,j = Bk,j , if
j ∈ J1,kK\Jk .
set Ck+1,j,s ∈ arg min

c∈C

{∣∣c−P(XI,s | j ∈ Ak+1, I
)∣∣},

Choice of Bk+1,k+1, ensuring that D(X ,θk+1)≤ α:

Bk+1,k+1 =
{

s ∈
⋂

j∈Jk

Bk,j : Var
(
PXI,s |k+1∈Ak+1,I

)
+ min

c∈C

[
c−P

(
XI,s |k +1 ∈ Ak+1,I

)]2 ≤ α

}
,

where PI = 1
n

n

∑
i=1

δi . s ∈ Bj .
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Choice of Jk

Let |Ak |= ∑
n
i=1|Ak,i | and |Bk |= ∑

k
j=1|Bk,j |.

Assuming that everything is coded on L bits,
Q(θk) = 2−L

(
|Ak |+2|Bk |+(n+2k)

)
is a sub-probability measure.

Thus

ξ (k) = L−1 log2
(
Q(θk+1)/Q(θk)

)
= 2|Bk+1,k+1|−

n

∑
i=1
1
(
k +1 ∈ Ak+1,i

)
−2

can be maximized in Jk to find the pair giving the best data
compression.
A faster less optimal choice consists in choosing Jk = {jk,1, jk,2}, where

jk,1 ∈ arg max
j

2|Bk,j |−
n

∑
i=1
1
(
j ∈ Ak,i

)
and jk,2 ∈ arg max

jk,2
ξ (k).
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Syntax analysis

Purpose
We get from the first fragmentation step a lossy code θ = (A,B,C) made
of a fragment codebook (B,C) = (Bj ,Cj)k

j=1 described by their supports Bj
and their contents Cj , and n sets of labels A = (Ai )n

i=1, where Ai ⊂ J1,kK,
describing the sample images. The aim of the syntax analysis step is to
perform lossless data compression on the sample description A.

Starting point
The enumeration of A as a list of words with separators between the sets

w1,1 . . .w1,r1 ∧w2,1 . . . ,w2,r2 ∧·· ·∧wn,1 . . .wn,rn ∧ .

This representation follows the syntax {{w}∧} where w ∈ J1,kK is of type
fragment label and where {} denotes repetition, according to Extended
Backus Naur specifications.
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First step : grammar based compression

Starting from A0,i = Ai , i ∈ J1,nK, iterate the following for m ≥ 0.
Choose a pair Jm ⊂ J1,k + mK and define
Am+1,i =

(
Am,i \Jm

)
∪{k + m +1} when Jm ⊂ Am,i and Am+1,i = Am,i

otherwise.
Choose Jm to maximize

n
∑
i=1
1
(
Jm ⊂ Am, i

)
as long as it is greater than 2.

Appending the description of the pairs, we get a representation of type
{{w |p}∧}{ab} where w ∈ J1,kK, p ∈ Jk +1,k + mK and
a,b ∈ J1,k + mK.
Its length decreases at each step.

We appended to the sample representation R ::= {{w |p}∧} containing non
terminal symbols of type p, the description of a grammar G ::= {ab}
represented by the right-hand side of context free rewriting rules p→ ab.
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Second step : grammar based grammar compression

We can reindex the grammar G to get
a1b1,1a1b1,2 . . .a1b1,q1 . . .ambm,1 . . .ambm,qm where the ai are distinct
and q1, . . . ,qm are maximal.
We can then factorize G into
a1 . . .am∧b1,1 . . .b1,q1 ∧·· ·∧bm,1 . . .bm,qm∧ that is of the type
G ::= {a}∧{{b}∧}.
The second part of the description of G , describing the contexts
{{b}∧} of the pairs first elements {a}, is of the same type as the
original representation and can be compressed again.
Thus {{b}∧} becomes {{b|s}∧}{cd}, where s are new non terminal
syntax symbols and where {cd} is a second grammar.
The syntax labels s represent sets of configurations that appear in the
same contexts {a} and therefore perform a certain kind of context
analysis.
The whole representation follows the syntax
{{w |p}∧}{a}∧{{b|s}∧}{cd}.
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Syntax labels

The syntax labels of step 2 induce a classification of the symbols of step 1.
We define

f (w) = w when w ∈ J1,kK,
f (p) = s when p→ ab and b is recovered from the compressed
representation of ab by rewriting s
and f (p) = b when p→ ab has not been compressed in the second
step.

We obtain f : J1,k + mK→ J1,k + m + m′K and we can recode j ∈ J1,k + mK
as f (j)h(j) where h(j) is the rank of j ∈ f −1[f (j)

]
.

The sample representation R becomes of type {{fh}∧}. It can be split into
{{f }∧}{{h}∧} where the values of h corresponding to each value of f have
been gathered on the right. Each {f } describes the syntax of a sample
image at the first level.
The whole compression process can be repeated on the first level sample
syntax {{f }∧} to get several levels of syntax organized into a syntax tree.
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Generalization bounds for k-means

Lemma for linear k-means in a separable Hilbert space
Let (W1, . . . ,Wn) be n independent copies of W ∈ `2.
Assume that ‖W ‖∞ = ess sup‖W ‖< +∞.
Let Θ⊂

(
`2)k be bounded.

Assume that PW

(
min

j∈J1,kK
〈θj ,W 〉 ∈ [a,b] for all θ ∈Θ

)
= 1.

For any k ≥ 2, any n ≥ 2k and any δ ∈]0,1[, with probability at least
1−δ , for any θ ∈Θ,

PW

(
min

j∈J1,kK
〈θj ,W 〉

)
≤ PW

(
min

j∈J1,kK
〈θj ,W 〉

)
+
(

log(n/k)
log(2)

√
8 log(k)

n +2
√

log(k)
n

)
‖Θ‖‖W ‖∞

+

√
(
√
2+1)

(
k(b−a)2 +2 log(ek)‖W ‖2∞‖Θ‖2

)
n +

√
log(δ−1)

2n (b−a).
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For estimators

Lemma on the excess risk
If θ ∗ ∈Θ is non random, with probability at least 1−δ ,

sup
θ∈Θ

(
PW −PW

)(
min

j∈J1,kK
〈θj ,W 〉− min

j∈J1,kK
〈θ ∗j ,W 〉

)
≤

(
log(n/k)

log(2)

√
8 log(k)

n +2
√

log(k)
n

)
‖Θ‖‖W ‖∞+√

(
√
2+1)

(
k(b−a)2 +2 log(ek)‖W ‖2∞‖Θ‖2

)
n +

√
2 log(δ−1)

n (b−a).

If θ̂ ∈ arg min
θ∈Θ

P
(

min
j∈J1,kK

〈θj ,W 〉
)
, we have the same bound for

PW

(
min

j∈J1,kK
〈θ̂j ,W 〉

)
− inf

θ∈Θ
PW

(
min

j∈J1,kK
〈θj ,W 〉

)
.

Gautier Appert A new approach to unsupervised Machine Learning



In expectation

Lemma
In expectation with respect to the sample distribution

PW1,...,Wn

[
PW

(
min

j∈J1,kK
〈θ̂j ,W 〉

)
− inf

θ∈Θ
PW

(
min

j∈J1,kK
〈θj ,W 〉

)]
≤

(
log(n/k)

log(2)

√
8 log(k)

n +2
√

log(k)
n

)
‖Θ‖‖W ‖∞

+

√
(
√
2+1)

(
k(b−a)2 +2 log(ek)‖W ‖2∞‖Θ‖2

)
n .
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Quadratic k-means in a Hilbert space

Proposition
Let (X1, . . . ,Xn) be n independent copies of X ∈ H, some separable
Hilbert space.
Assume that P

(
‖X‖ ≤ B

)
= 1, n ≥ 2k and k ≥ 2.

Consider an estimator Ĉ ∈ arg min
C∈Hk

PX
(

min
j∈J1,kK

‖X −Cj‖2
)
.

PX1,...,Xn

[
PX
(

min
j∈J1,kK

‖X − Ĉj‖2
)]

≤ inf
C∈Hk

PX
(

min
j∈J1,kK

‖X −Cj‖2
)

+16B2 log
(

n
k

)√
k log(k)

n .︸ ︷︷ ︸
Improves on [Biau Devroye and Lugosi, 2008] O

(
k/
√

n
)
.

Proof: Remark that ‖Cj‖2−2〈Cj ,X 〉= 〈θj ,W 〉, where
θj =

(
Cj ,γ

−1‖Cj‖2B−1) ∈ H×R and W =
(
−2X ,γB

)
and apply the

previous lemma. Take γopt =
√
2.
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Proof of the lemmas for linear k-means

Lemma. PAC-Bayesian inequality
Consider h : T×W→R.
Consider a prior π ∈M1

+(T) on the parameter space T.
Let λ > 0 be a positive exponent.
Let (W1, . . . ,Wn) be n independent copies of W ∈W.

PW1,...,Wn

{
exp
[

sup
ρ∈M1

+(T)
sup
η∈N

{∫
min
{

η ,−λ

n

∑
i=1

h(θ ,Wi )

−n log
[
PW exp

[
−λh(θ ,W )

]]}
dρ(θ)−K(ρ,π)

}]}
≤ 1.
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Gaussian perturbations

Let ρθ ′ |θ =
k⊗

j=1

(⊗
i∈N

N(θj, i , β
−1)
)

: (RN)k →M1
+
(
(RN)k).

Let

〈θ ,w〉=

 lim
s→+∞

s

∑
i=0

θiwi , when lim
s→+∞

s

∑
i=0

θiwi = lim
s→+∞

s

∑
i=0

θiwi ∈R,

0, otherwise
be a non bilinear but measurable extension of the scalar product from
`2 to RN.
Introduce f (θ ,w) = min

j∈J1,kK
〈θj ,w〉, θ ∈ (RN)k ,w ∈RN

and the centered loss function f (θ ,w) = f (θ ,w)−PW
(
f (θ ,W )

)
.
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PAC-Bayesian chaining

Write

(PW −PW )f (θ ,W ) =
(
PW −PW

)(
δθ ′ |θ −ρθ ′ |θ︸ ︷︷ ︸

small perturbation

)
f (θ

′,W )

+
H

∑
p=1

(
PW −PW

)(
ρ

2p−1

θ ′ |θ −ρ
2p

θ ′ |θ︸ ︷︷ ︸
chain of intermediate scales

)
f (θ

′,W )

+
(
PW −PW

)
ρ

2H

θ ′ |θ︸ ︷︷ ︸
big perturbation

f (θ
′,W ).

Remark that(
δθ ′ |θ −ρθ ′ |θ

)
f (θ

′,W ) = ρθ ′ |θ

(
min

j∈J1,kK
〈θj ,W 〉− min

j∈J1,kK
〈θ ′j ,W 〉

)
≤ ρθ ′ |θ

(
max

j∈J1,kK
〈θj −θ

′
j ,W 〉︸ ︷︷ ︸

Gaussian/ρ

)
≤
√
2 log(k)/β ‖W ‖∞.
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Chaining inequalities

From the PAC-Bayesian inequality applied to
h(θ ,w) =

(
δθ ′ |θ −ρθ ′ |θ

)
f (θ

′,w),

PW1,...,Wn

{
exp sup

θ∈(`2)k

[
nλ
(
PW −PW

)(
ρθ ′ |θ −ρ

2
θ ′ |θ
)
f (θ

′,W )

−nρθ ′ |θ

[
log
(
PW

[
exp
(
−λ
(
δθ ′′ |θ ′−ρθ ′′ |θ ′

)
f (θ

′′,W )
)])]

− β‖θ‖2

2

]}
≤ 1.

This gives

PW1, ... ,Wn

[
sup
θ∈Θ

(
PW −PW

)(
ρθ ′ |θ −ρ

2
θ ′ |θ
)
f (θ

′,W )
]

≤ 4λ

β
log(k)‖W ‖2∞ + β‖Θ‖2

2nλ
=

λopt
‖W ‖∞‖Θ‖

√
8 log(k)

n .
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Bounding the biggest perturbation

Consider ψ(x) =
{

log
(
1+ x + x2/2

)
, x ≥ 0,

− log(1−x + x2/2
)
, x ≤ 0,

and f̃ (θ ,W ) = f (θ ,W )− a + b
2 .

Remark that(
PW −PW

)
ρθ ′ |θ f (θ

′,W ) =

ρθ ′ |θ

[
PW f̃ (θ

′,W )−PW

(
λ
−1

ψ
[
λ f̃ (θ

′,W )
])]

+ ρθ ′ |θPW

[
λ
−1

ψ
[
λ f̃ (θ

′,W )
]
− f̃ (θ

′,W )
]

︸ ︷︷ ︸
≤ λ

2(1+
√

2)

[
(b−a)2/4+2 log(ek)‖W ‖2∞/β

]
since |x−ψ(x)|≤ x2

4(1+
√

2) , x∈R.

.
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PAC-Bayesian inequality with an influence function

Take h(θ ,w) = λ−1ψ
[
λ f̃ (θ ,w)

]
to obtain

PW1, ... ,Wn

{
sup
θ∈Θ

exp
[
−nλρθ ′ |θPW

(
λ
−1

ψ
[
λ f̃ (θ

′,W )
])

−nρθ ′ |θ

[
log
(
PW

[
exp
(
−ψ
[
λ f̃
(
θ
′,W

)])])]
− β‖θ‖2

2

]}
≤ 1.

Use ψ(x)≤ log
(
1+ x + x2/2

)
, x ∈R to deduce

PW1, ... ,Wn

{
sup
θ∈Θ

ρθ ′ |θ

[
PW

(
f̃
(
θ
′,W

))
−PW

(
λ
−1

ψ
[
λ f̃ (θ

′,W )
])]}

≤ λ

[
(b−a)2/4+2 log(ek)‖W ‖2∞/β

]
+ β‖Θ‖2

2nλ
.

Gautier Appert A new approach to unsupervised Machine Learning



Putting all together

For the biggest perturbation we get

PW1, ... ,Wn

{
sup
θ∈Θ

(
PW −PW

)
ρ

2H

θ ′ |θ f (θ
′,W )

}

≤
λopt

√√√√(
√
2+1)

(
2−Hβ (b−a)2 +8 log(ek)‖W ‖2∞

)
‖Θ‖2

4n .

Putting all together

PW1, ... ,Wn

{
sup
θ∈Θ

(
PW −PW

)
f (θ ,W )

}
≤ 2
√

2 log(k)/β‖W ‖∞

+

√√√√(
√
2+1)

(
2−Hβ (b−a)2 +8 log(ek)‖W ‖2∞

)
‖Θ‖2

4n

+ H‖W ‖∞‖Θ‖
√

8 log(k)
n .

Choose β = 2n‖Θ‖−2 and H =
⌊
log(n/k)/ log(2)

⌋
.
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Deviations

According to the bounded difference inequality
With probability at least 1−δ

sup
θ∈Θ

(
PW −PW

)
f (θ ,W )

≤ PW1, ... ,Wn

{
sup
θ∈Θ

(
PW −PW

)
f (θ ,W )

}
+
√

2 log(δ−1)
n (b−a).
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Generalization bounds for fragmentation

Consider the fragmentation model

M(S) =
{

(B,C)k
j=1 : Bj ⊂ J1,kK,Cj ∈ [−a,a]Bj ,

k

∑
j=1
PS
(
Bj
)
≤ S, |TB,K | ≥ 2

}
,

where TB,K =
{

A⊂ TB : |A| ≤ K
}
.

Remark that log
(
|TB,K |

)
≤ K log

(
ek
K

)
.

Consider the risk function

R(B,C) = D(B,C)︸ ︷︷ ︸
def= d−1PX

(
min

A∈TB,K
‖X −CA‖2

)
−d−1PX

(
‖X‖2

)

= d−1PX
[

min
A∈TB,K

(
‖CA‖2−2〈X ,CA〉

)]
.

Assume that P
(

max
s∈J1,dK

|Xs | ≤ a
)

= 1.
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Empirical upper bound for the risk

Proposition
Assume that k ≥ 2, K ≥ 1, S ∈ [1,k], n ≥ 2SK and δ ∈]0,1[. With
probability at least 1−δ , for any (B,C) ∈M(S),

R(B,C)−R(B,C)≤ a2

(√
10 log(nS−1K−1)

log(2)

√
8SK log(|TB,K |)

n

+2
√
10
√

SK log(|TB,K |)
n +

√
4(
√
2+1)

(
9+5 log(|TB,K |)

)
SK

n

+2
√

k(k−1) log(2) +2 log(δ−1)
n

)

≤ a2O

(
log
(

n
SK

)√
SK 2 log

(
k/K

)
n +

√
k2 + log(δ−1)

n

)
.

This is based on a lemma for linear fragmentation similar to the linear
k-means lemma.
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Conclusion

For a given empirical distortion level D(X ,B,C), we should minimize
S = d−1|B|, to get the best possible generalization bound, similarly to
what was suggested by the compression approach.
We can take advantage of this generalization bound to compute the
fragmentation code book (B,C) on a subsample of the data base to be
analyzed.
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For estimators

Proposition

Let (B̂, Ĉ) ∈ arg min
(B,C)∈M(S)

D(B,C) +
(

log(nS−1K−1)
log(2)

√
8SK log(|TB,K |)

n

+2
√

SK log(|TB,K |)
n

)
√
10a2 +

√
4(
√
2+1)

(
4+5 log(e|TB,K |)

)
SK

n a2.

With probability at least 1−δ ,

D(B̂, Ĉ)≤ inf
(B,C)∈M(S)

D(B,C) +
(

log(nS−1K−1)
log(2)

√
8SK log(|TB,K |)

n

+2
√

SK log(|TB,K |)
n

)
√
10a2 +

√
4(
√
2+1)

(
4+5 log(e|TB,K |)

)
SK

n

+4
√

k(k−1) log(2) +2 log(δ−1)
n a2.
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Application to images: a small example

Some images to analyze
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Application to images: extraction of the training sample

. . .

300 extracted patches of size 300×300 from the three previous yellow frames.

Gautier Appert A new approach to unsupervised Machine Learning



Application to images: extraction of the training sample

. . .

300 extracted patches of size 300×300 from the three previous yellow frames.

Gautier Appert A new approach to unsupervised Machine Learning



Application to images: extraction of the training sample

. . .

300 extracted patches of size 300×300 from the three previous yellow frames.

Gautier Appert A new approach to unsupervised Machine Learning



Application to images: extraction of the training sample

. . .

300 extracted patches of size 300×300 from the three previous yellow frames.

Gautier Appert A new approach to unsupervised Machine Learning



Application to images: extraction of the training sample

. . .

300 extracted patches of size 300×300 from the three previous yellow frames.

Gautier Appert A new approach to unsupervised Machine Learning



Application to images: extraction of the training sample

. . .

300 extracted patches of size 300×300 from the three previous yellow frames.

Gautier Appert A new approach to unsupervised Machine Learning



Application to images: extraction of the training sample

. . .

300 extracted patches of size 300×300 from the three previous yellow frames.

Gautier Appert A new approach to unsupervised Machine Learning



Application to images: extraction of the training sample

. . .

300 extracted patches of size 300×300 from the three previous yellow frames.

Gautier Appert A new approach to unsupervised Machine Learning



Application to images: extraction of the training sample

. . .

300 extracted patches of size 300×300 from the three previous yellow frames.

Gautier Appert A new approach to unsupervised Machine Learning



Application to images: extraction of the training sample

. . .

300 extracted patches of size 300×300 from the three previous yellow frames.

Gautier Appert A new approach to unsupervised Machine Learning



Application to images: extraction of the training sample

. . .

300 extracted patches of size 300×300 from the three previous yellow frames.

Gautier Appert A new approach to unsupervised Machine Learning



Application to images: a small example

Fragmentation parameters

Threshold for the distortion: α = 0.1× 1
d

d
∑
s=1

Var
(
PXs

)
Number of fragments: 2000

Fragmentation criterion: looking for indexes that maximize

2 |Bj |︸︷︷︸
size of

fragment j

−
n
∑
i=1
1(j ∈ Ai )︸ ︷︷ ︸

number of images
sharing fragment j

.
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Fragmentation: image approximation

Figure: Image approximation resulting from the fragmentation vs original image.

Gautier Appert A new approach to unsupervised Machine Learning



Fragmentation: image approximation

Figure: Image approximation resulting from the fragmentation vs original image.

Gautier Appert A new approach to unsupervised Machine Learning



Fragmentation: image approximation

Figure: Image approximation resulting from the fragmentation vs original image.
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Fragmentation: visualization of the fragments

Figure: Visualization of the fragments.
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Fragmentation: visualization of the fragments

Figure: Visualization of the fragments.
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Merging and syntax analysis

Merging and Syntax parameters
Maximum number of merged/compressed fragments: 300
Maximum number of syntax labels: 300
Iterate the merging step and syntax step until no merging is
performed: 14 syntax steps.
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Syntax labels

Syntax labels at highest level.

Compared to the result of fragmentation, some simplifications can be
observed.
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Identifying translations

Figure: Visualization of a syntax label detecting some kind of translation.

Gautier Appert A new approach to unsupervised Machine Learning



Identifying translations

Figure: Visualization of a syntax label detecting some kind of translation.
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Figure: Visualization of a syntax label detecting some kind of translation.
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Figure: Visualization of a syntax label detecting some kind of translation.
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Identifying translations

Figure: Visualization of a syntax label detecting some kind of translation.
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Identifying translations

Figure: Visualization of a syntax label detecting some kind of translation.
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Identifying related patterns coming from different images/scenes

First identification of the Kitten’s head

Figure: Visualization of a fixed syntax label recognizing related pattern.
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Identifying related patterns coming from different images/scenes

First identification of the Kitten’s head

Figure: Visualization of a fixed syntax label recognizing related pattern.
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Identifying related patterns coming from different images/scenes

Second identification of the Kitten’s head

Figure: Visualization of a fixed syntax label recognizing related patterns.
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Identifying related patterns coming from different images/scenes

Second identification of the Kitten’s head

Figure: Visualization of a fixed syntax label recognizing related patterns.
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Weak distortion and information fragmentation

To get a weaker notion of distortion, introduce a probabilistic
description of X as PS,V |X .
Define the triplet (X ,S,V ), where PS |X = PS = 1

d ∑
d
s=1 δs is uniform

on pixel locations and where PV |X ,S = N
(
XS ,σ

2) is the value XS at
pixel S blurred by a Gaussian noise.
Describe the sample by PX ,S,V = PXPS,V |X .
Introduce the empirical weak distortion

D̃(X ,B,C) = 2σ
2
[
1− exp

(
− inf

Q∈Q
K
(
QX ,S,V ,PX ,S,V

))]
= 2σ

2PX

[
min

A∈TB,K
PS ∑

j∈A
1
(
S ∈ Bj

)[
1− exp

(
−(XS −Cj,S)2/(2σ

2)
)]]

≤D(X ,B,C), where

Q =
{

QX ,S,V : for some A :Rd → TB,K , QV |X ,S = N
(
CA(X),S ,σ

2)},
and its expected value D̃(B,C).
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Gaussian approximation is optimal for the weak distortion

Lemma
Minimizing the weak distortion in C , the fragment contents, gives the
optimal approximation of PX ,S,V under a conditional independence
assumption only. Indeed

inf
Cj∈RBj

D̃
(
X ,B,C

)
= 2σ

2 inf
Q∈Q

[
1− exp

(
−K

(
QX ,S,V ,PX ,S,V

))]
where

Q =
{

QX ,S,V : for some A :Rd → TB,K ,QV |X ,S = QV |S, `A,B(X ,S)
}

and
`A,B(X , S) = j ⇐⇒ S ∈ Bj and j ∈ A(X )

is the classification function defined by A and B.
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Generalization bounds for the weak distortion

Proposition

Let (B̂, Ĉ) ∈ arg min
(B,C)∈M(S)

D̃(X ,B,C) +2σ
2

(
log(nS−1K−1)

log(2)

√
8SK log(|TB,K |)

n

+2
√

SK log(|TB,K |)
n

)
+2σ

2

√
(
√
2+1)

(
1+2 log(e|TB,K |)

)
SK

n ,

with probability at least 1−δ ,

D̃(B̂, Ĉ)≤ inf
(B,C)∈M(S)

D̃(B,C) +2σ
2

(
log(nS−1K−1)

log(2)

√
8SK log(|TB,K |)

n

+2
√

SK log(|TB,K |)
n

)
+2σ

2

√
(
√
2+1)

(
1+2 log(e|TB,K |)

)
SK

n

+2σ
2
√

k(k−1) log(2) +2 log(δ−1)
n .
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