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Representation of image with multi-level bags of labels

First step: creating a bag of labels

@ Divide each image {Xi,..., Xy} into non overlapping patches {B;, i € I}
= cluster all patches {B;, for all j}.

(i) Region detection (ii) Feature extraction (iii) Vector quantization
el --

- 8

(iv) Bag-of-words

Figure : Firgure 1 in Bag-of-Words Representation in Image Annotation: A Review. Chih-Fong Tsai

@ Each image X is then represented as Py x = % ZZI Ow; -
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Representation of image with multi-level bags of labels

Multi-level

@ Clustering labels with respect to a distortion measure is difficult —-
Instead use contextual modeling : cluster labels w and w’ if they share
the same context, but do not appear together. Define the context C of W
inimage X as C =Py x o fmj}A, where fiy a is the function that sends W
to the outer state A. Note that C € M’ (W U {A}) is a random
measure, and a function of the couple of random variables (X, W).

o Cluster/agreggate words {w, w'} iff Pcjw—n ~ Pcjw_w’.

@ Which means that we are looking for a classification function £ : W — Z
such that
Pow =Pepgwy <= C L W | {(W).

@ When this is the case, IP]PW|x can be recovered from IP]pZ( nd

w)| X a

Pwew).
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Euclidian k-means: theoretical and empirical loss

Let X € RY with Px [||X||§} < ooandlet £:X — {1,..., k} be the labelling

function. The set X can be R? or the index set {1,...,n}.
]
theoretical loss Empirical loss
inf inf P { X - 2] .
R X H NZ(X)H2 In Inf ZHX e )HZ

K1,

inf P 11X — EIX |60 B

o1 2

=inf = E E Xi — 1t

= inf IPX{minHX—;sz%} ¢oni~ L I il
Hlyeees bk j<k J=1iee=1())

n

o1 . 2
= inf - 21: min [1Xi — pill2
-

Lloyd 's algorithm finds a local minimum through an iterative scheme: allocate
data points to the nearest centroid and recompute centers from this partition.
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Geometric mean of a conditional probability measure

Definition (Geometric mean of a conditional probability measure.)

Define the geometric mean function §(-, ) of a conditional probability measure
dP(t|s) = m(t|s) du(t) with respect to the probability measure dP(s) as

9(dP(t|s),dP(s)) —z exp{/|og[dP(t|s)] dP(s)}

rz-! exp{/log[m(ﬂs)] dP(s)} dp(t),

where Z is a normalizing constant. Note that this is independent from the

choice of p: if v € ML is such that p < v, dP(t|s) = S—Z(t) m(t|s) dv(t) and

9(dP(t|s)7dP(s)> —z exp{/log (%(t) m(t|s)) dP(s)} du(t).
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Information k-means: theoretical and empirical loss

Let (Y, X) be a couple of random variables, assume that Py x is known,
whereas Px may be unknown.

Theoretical version

inf inf PX[K(QYM(X)’IPYP():I = mf IPXI:infgc(Qy‘j,IPyp()}
£ Qyo(x) Qy > i<k J<k
= inf Px {JC(QT,M(X),IPY‘X)} = inf IPX[Iog(ZZ&))},

where Q¥,(x (the information k-means centers) and Zy(x) (the normalizing
constants) are defined as

* def —
Qviexy = S(IPY|X7 IPXM(X)) = Zg()l() exp {IPXM(X) ['08; IPY\X] } .
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Information k-means: theoretical and empirical loss

Consider a set of conditional probability distributions Ry |; for the random
variable Y knowing i € [n], that we want to cluster.

Empirical loss

o J{ -
/z:{1,.4.,nl}n—>{1 K} Qm Z Qvue( YI)

inf EZ. inf %C(Qyy, Rypi)

Qy; n — Jje{1,...,k}
= |nf 72 |nf Z Qy|j,Ry‘ )
Y ice- ()

CINS : Zk [£0)] -1
= |r2f - E :K(QYM(I')? RY\i) = '?f = |0g(Zj )’
i=1 J=L

1
here @3, =2 T RY.
iee—1(j)
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Information k-means: theoretical and empirical loss

Due to the properties of the Kullback divergence, the following algorithm to
compute an initial classification ¢ gives promising results.

@ Start from k=1 and £7*(1) = {1,...,n}.

@ Switch from k to k + 1 by removing iteratively from £-1(k)

arg max K(Q¥x, Ryj;) to put it in £71(k + 1), until log(Z ') < n.
g max (Q¥1k Ryii) to p (k+1) g(Z:1) <n

@ Continue if Iog(Z,;ll) > 1.
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Link with Information projection

Definition (Information projection.)

Let P be a probability distribution, and let Q be set of probability distribution.
The information projection or |-projection of P onto Q is defined as

Q" € arg ggg iK(Q, P).

Information k-means seen as an information projection

@ Consider the model

Q= {QY,X 1 Qx =Px, Qvix = Qviyx), 4X) e {1,.. '7k}}7

QyiT:EQ :K(QY,X, IPY,X)

= inf QX[X<QY\X7IPY|X)}+K(QXa]PX)

Qy x€9Q

= inf ]PX{IK(QYM(X),]PHX)}
(X)

£,Qy | g(x
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Information k-means become Euclidian with Gaussian

distribution

Information k-means generalize Euclidian k-means

o Take Pyjx = N,(X,X).

@ One obtains

dQyex)(y) o exp {wa(x) [Iog (d]z;X (Y)ﬂ } dA(y)

o exp {—% (yTZ_ly — 2yT):_1E[X|€(X)])}
x Np (BE[X[£(X)], X)

@ Then K(Q*y‘g(x),IPYlX) = HX - E[XM(X)} ||2Z*1'

° ir}f Px {UC(QT/‘@(X),IPHX)] = i?f Px MX - E[XM(X)] H22711|
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PAC-Bayesian Margin bounds on information k-means

Information k-means loss in the case of discrete Py

Let Y € Y with |Y| < co.

° L(Q)= IPX|:mini§k fK(Qvu,]Pv\x)}

dQy|; dp .
@ Put qi = TI‘, px = %‘X = L(q) = IP)(I:mIn,'Sk j{(q,‘,px)]

Recall K(q,—,px) = (qi, log(qi) — log(px))-

Put 0" = (_qi7 <qi, |Og(qi)>)T’ T )

01 = (ar — g5, {9, 10g(q1)) — (1, log(q:))) " € RI?I** and
W = (logpx,1)" € R+,

Hence, K(q,—,px) = (6;, W) and

-'K(q,-,px) < X(thX) = (0i;,W)>0.
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PAC-Bayesian Margin bounds on information k-means

upper bound on the Loss

@ Using the fact that

@ We can rewritte

<ZIPX[ 0, W) T 1 (61, >o)]

J#i
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PAC-Bayesian Margin bounds on information k-means

Put a perturbation and a margin
@ Gaussian perturbation pg = N{@,B’IIMH}.
@ Margin M = ~||W/||.

lemma

T

P | 6 W) T [ 1065 w) + +1W1 2 0) o, (65

JF#i

@ Looks like some kind of classification problem with margin M = ~||W||.
[Catoni, Lecture notes , 2014].

@ Estimation of the mean of (¢;, W). [Catoni,Giulini 2017].

Gautier Appert Information k-means and application to digital images



PAC-Bayesian Margin bounds on information k-means

Upper bound of the information k-means loss

Introduce g1(t) = 3(exp(t) — 1) and g» = % (exp(t) — 1 — t). With probability
at least 1 — ¢,

@) <o (v/E) {Zﬁ [0 (W, 0-9)]

+ % 1PX<<0,-, W>2P) + LZ Px (\|W||2P)

+ﬁ11>x(\ 0, W) W7 + 25 {IIO P Y oyl }k Caes )}7

J#i

. 2 .
e () o205 (2)

A=TTe(VBG+ 1w @, w))) andzzw.
J#i
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PAC-Bayesian Margin bounds on Euclidian k-means

Euclidian kK — means loss

@ Consider L(u) = Px (minigk [IX — Hi||2)

v

Change of notation

o Put 6 = (=, lwill®) ", 61y = (i — s, Il = llwall*) T € RP* and
W= (2X,1)" € R*..

@ Hence (polarization identity), || X — wil|* = (6;, W) + || X]||* and
IX = pil® < IX = wil* <= (6, W) 20.

5(1) <Z]PX[ 0, w) [ 1 (01, >o)] +IPX[HX||2].

J#i

A\

@ Same bound as before for £(u) — Px [||X||2} :

V.
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Application to images: a small example

How to create patches with a random support ?

o Let (X;,i € 1) € R! be a random image, where |/| < oo is the
number of pixels.

@ Represent the pixel location i/ by a random variable S, putting

1
Psyix = i > 6 ®@dx, where (S,V)elxR.
icl
e Add noise, introducing V' = V + ¢ such that E(V'|X,S) = V.
e Put U = (S, V’) and change the representation of X to Pyx.

@ Use an auxiliary set of images represented by the distribution
Qo,u € ML [© x (I x R)], where |supp(Qp,u)| < co. Take for
instance the empirical distribution of n independent copies of X, or

. 1 ¢
more precisely Qg u = - Z;(Sj ® Ps vix=x,, where
J:
(X1 <j < n)~PY"

@ Solve inf inf Qe,u{K(wa,eg(u)Jwa)]
Kg:supp(ng)—){l,...,k} Qxj6,¢4(0)
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Application to images: a small example

Define the patch process as Pr|x = Qg ¢,(u)|x-

@ In the exact case where Px|y = Qx|g,¢,(u),

dPyx,uesupp(Qu) 1 dQp ¢,(u)x
’ u) = Zo  Qory—y | —2:LoIX (g g,(u)) |
dP yjuesupp(Qu) () = 2x" Qoo dQy,e(u) (6. £o()

o Cluster the patches solving

inf inf Rt |X(R , P
L:supp(Rr)—{1,....k} Rx|e(m) T[ (Xle(T) XlT)]

Define a new representation as Py x = Ry(7)x-
@ In the exact case where Rx|(7) = Px|r and supp(R7) = supp(Pr),

WBrix () = zo1 IRUDX ()
dPr X "Ry ’

showing that the previous representation IPr|x can be recovered
exactly from the next one P\ |x = Ry(1)x and the marginal
distributions Pr and Ry().
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Application to images: a small example
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Application to images: a small example

Figure : Extracted patches : 500 x 500 from two images 1000 x 1500. .

the training sample corresponds to the extracted patches.
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Application on images: small example

Figure : Selected image.
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Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.
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