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Representation of image with multi-level bags of labels
First step: creating a bag of labels

Divide each image {X1, . . . ,Xn} into non overlapping patches {Bi , i ∈ I}
=⇒ cluster all patches {Bj , for all j}.

Figure : Firgure 1 in Bag-of-Words Representation in Image Annotation: A Review. Chih-Fong Tsai

Each image X is then represented as PW |X = 1
m
∑m

i=1 δwi .
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Representation of image with multi-level bags of labels

Multi-level

Clustering labels with respect to a distortion measure is difficult =⇒
Instead use contextual modeling : cluster labels w and w ′ if they share
the same context, but do not appear together. Define the context C of W
in image X as C = PW |X ◦ f −1

W ,∆, where fW ,∆ is the function that sends W
to the outer state ∆. Note that C ∈M1

+

(
W ∪ {∆}

)
is a random

measure, and a function of the couple of random variables (X ,W ).
Cluster/agreggate words {w ,w ′} iff PC|W =w ' PC|W =w′ .
Which means that we are looking for a classification function ` : W→ Z

such that
PC|W = PC|`(W ) ⇐⇒ C ⊥⊥W | `(W ).

When this is the case, PPW |X can be recovered from PP`(W )|X and
PW |`(W ).
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Euclidian k-means: theoretical and empirical loss

Let X ∈ Rd with PX

[
‖X‖2

2

]
<∞ and let ` : X→ {1, . . . , k} be the labelling

function. The set X can be Rd or the index set {1, . . . , n}.

theoretical loss

inf
`

inf
µ1,...,µk

PX

[
‖X − µ`(X)‖2

2

]
= inf

`
PX

[
‖X −E[X |`(X)]‖2

2

]
= inf
µ1,...,µk

PX

[
min
j≤k
‖X − µj‖2

2

]

Empirical loss

inf
`

inf
µ1,...,µk

1
n

n∑
i=1

‖Xi − µ`(i)‖2
2

= inf
`

1
n

k∑
j=1

∑
i∈`−1(j)

‖Xi − µj‖
2

= inf
µ1,...,µk

1
n

n∑
i=1

min
j≤k
‖Xi − µj‖2

2

Lloyd ’s algorithm finds a local minimum through an iterative scheme: allocate
data points to the nearest centroid and recompute centers from this partition.
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Geometric mean of a conditional probability measure

Definition (Geometric mean of a conditional probability measure.)
Define the geometric mean function G(·, ·) of a conditional probability measure
dP(t|s) = m(t|s) dµ(t) with respect to the probability measure dP(s) as

G

(
dP(t|s), dP(s)

)
= Z−1 exp

{∫
log
[
dP(t|s)

]
dP(s)

}
def
= Z−1 exp

{∫
log
[
m(t|s)

]
dP(s)

}
dµ(t),

where Z is a normalizing constant. Note that this is independent from the
choice of µ: if ν ∈M1

+ is such that µ� ν, dP(t|s) =
dµ
dν (t) m(t|s) dν(t) and

G

(
dP(t|s), dP(s)

)
= Z−1 exp

{∫
log
(dµ

dν (t) m(t|s)
)

dP(s)

}
dν(t).
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Information k-means: theoretical and empirical loss

Let (Y ,X) be a couple of random variables, assume that PY |X is known,
whereas PX may be unknown.

Theoretical version

inf
`

inf
QY |`(X)

PX

[
K
(
QY |`(X),PY |X

)]
= inf

QY |j , j≤k
PX

[
inf
j≤k

K
(
QY |j ,PY |X

)]
= inf

`
PX

[
K
(
Q∗Y |`(X),PY |X

)]
= inf

`
PX

[
log
(
Z−1
`(X)

)]
,

where Q∗Y |`(X) (the information k-means centers) and Z`(X) (the normalizing
constants) are defined as

Q
∗
Y |`(X)

def
= G
(
PY |X ,PX |`(X)

)
= Z−1

`(X) exp
{
PX |`(X)

[
logPY |X

]}
.
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Information k-means: theoretical and empirical loss
Consider a set of conditional probability distributions RY |i for the random
variable Y knowing i ∈ [n], that we want to cluster.

Empirical loss

inf
`:{1,...,n}→{1,...,k}

inf
QY |`(i)

1
n

n∑
i=1

K
(
QY |`(i),RY |i

)
= inf

QY |j

1
n

n∑
i=1

inf
j∈{1,...,k}

K
(
QY |j ,RY |i

)
= inf

`

1
n

k∑
j=1

inf
QY |j

∑
i∈`−1(j)

K
(
QY |j ,RY |i

)
= inf

`

1
n

n∑
i=1

K
(
Q∗Y |`(i),RY |i

)
= inf

`

k∑
j=1

∣∣`−1(j)
∣∣

n log
(
Z−1

j
)
,

where Q∗Y |j = Z−1
j

∏
i∈`−1(j)

R1/|`−1(j)|
Y |i .
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Information k-means: theoretical and empirical loss

Starting point
Due to the properties of the Kullback divergence, the following algorithm to
compute an initial classification ` gives promising results.

Start from k = 1 and `−1(1) = {1, . . . , n}.
Switch from k to k + 1 by removing iteratively from `−1(k)
arg max

i∈`−1(k)
K
(
Q∗Y |k ,RY |i

)
to put it in `−1(k + 1), until log

(
Z−1

k

)
≤ η.

Continue if log
(
Z−1

k+1

)
> η.
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Link with Information projection

Definition (Information projection.)
Let P be a probability distribution, and let Q be set of probability distribution.
The information projection or I-projection of P onto Q is defined as

Q∗ ∈ arg min
Q∈Q

K
(
Q,P

)
.

Information k-means seen as an information projection

Consider the model

Q =
{
QY ,X : QX = PX , QY |X = QY |`(X), `(X) ∈ {1, . . . , k}

}
,

inf
QY ,X∈Q

K
(
QY ,X ,PY ,X

)
= inf

QY ,X∈Q
QX

[
K

(
QY |X ,PY |X

)]
+ K

(
QX ,PX

)
= inf
`,QY |`(X)

PX

[
K

(
QY |`(X),PY |X

)]
.
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Information k-means become Euclidian with Gaussian
distribution

Information k-means generalize Euclidian k-means

Take PY |X = Np
(
X ,Σ

)
.

One obtains

dQ∗Y |`(X)(y) ∝ exp
{
PX |`(X)

[
log
(

dPY |X

dλ (y)

)]}
dλ(y)

∝ exp
{
−1
2
(
y>Σ−1y − 2y>Σ−1

E
[
X |`(X)

])}
∝ Np

(
E
[
X |`(X)

]
,Σ
)

Then K

(
Q∗Y |`(X),PY |X

)
=
∥∥X −E

[
X |`(X)

]∥∥2
Σ−1 .

inf
`
PX

[
K

(
Q∗Y |`(X),PY |X

)]
= inf

`
PX

[∥∥X −E
[
X |`(X)

]∥∥2
Σ−1

]
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PAC-Bayesian Margin bounds on information k-means

Information k-means loss in the case of discrete PY

Let Y ∈ Y with |Y| <∞.

L(Q) = PX

[
mini≤k K

(
QY |i ,PY |X

)]
Put qi =

dQY |i
dν , pX =

dPY |X
dν =⇒ L(q) = PX

[
mini≤k K

(
qi , pX

)]
.

Recall K
(
qi , pX

)
= 〈qi , log(qi )− log(pX )〉.

Put θi = (−qi , 〈qi , log(qi )〉)>,
θi,j = (qi − qj , 〈qi , log(qi )〉 − 〈qi , log(qi )〉)> ∈ R|Y|+1 and
W = (log pX , 1)> ∈ R|Y|+1.
Hence, K

(
qi , pX

)
= 〈θi ,W 〉 and

K
(
qi , pX

)
< K

(
qj , pX

)
⇐⇒ 〈θi,j ,W 〉 ≥ 0 .
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PAC-Bayesian Margin bounds on information k-means

upper bound on the Loss

Using the fact that

min
i≤k

ai =

k∑
i=1

ai

i−1∏
j=1

1 (ai < aj )

k∏
j=i+1

1 (ai ≤ aj ) .

We can rewritte

L(q) ≤
k∑

i=1

PX

[
〈θi ,W 〉

∏
j 6=i

1 (〈θi,j ,W 〉 ≥ 0)
]
.
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PAC-Bayesian Margin bounds on information k-means

Put a perturbation and a margin
Gaussian perturbation ρθ = N

{
θ, β−1I|Y|+1

}
.

Margin M = γ‖W ‖.

lemma

L(q) ≤
k∑

i=1

Φ
(
γ
√
β
)−(k−1)

×PX

[
〈θi ,W 〉

∏
j 6=i

∫
1
(
〈θ
′
i,j ,W 〉+ γ‖W ‖ ≥ 0

)
dρθi,j (θ

′
i,j )

]

Looks like some kind of classification problem with margin M = γ‖W ‖.
[Catoni, Lecture notes , 2014].
Estimation of the mean of 〈θi ,W 〉. [Catoni,Giulini 2017].
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PAC-Bayesian Margin bounds on information k-means

Upper bound of the information k-means loss

Introduce g1(t) = 1
t (exp(t)− 1) and g2 = 1

t2 (exp(t)− 1− t). With probability
at least 1− ε,

L(q) ≤ Φ
(
γ
√
β
)−(k−1)

{
k∑

i=1

P̂
n
X

[
〈θi ,Z〉H(W , θ−i )

]
+
λa
2 PX

(
〈θi ,W 〉2H

)
+
λb
2β PX

(
‖W ‖2H

)
+

αp

p + 1 PX

(∣∣〈θi ,W 〉
∣∣ ‖W ‖p

)
+

k β
2nλ

k∑
i=1

{
‖θi‖2 +

∑
j 6=i

‖θij‖2
}

k log(ε−1)

nλ

}
,

where a = g2

(
λ‖θi‖
α

)
, b = g1

(
λ2

2βα2

)
exp
(
λ‖θi‖
α

)
,

H =
∏
j 6=i

Φ
(√

β
(
γ + ‖W ‖−1〈θi,j ,W 〉

))
and Z =

min(λ‖W ‖, 1))W
λ‖W ‖ .
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PAC-Bayesian Margin bounds on Euclidian k-means

Euclidian k −means loss

Consider L(µ) = PX

(
mini≤k ‖X − µi‖2

)
Change of notation

Put θi = (−µi , ‖µi‖2)>, θi,j = (µi − µj , ‖µj‖2 − ‖µi‖2)> ∈ Rp+1 and
W = (2X , 1)> ∈ Rp+1.
Hence (polarization identity), ‖X − µi‖2 = 〈θi ,W 〉+ ‖X‖2 and
‖X − µi‖2 < ‖X − µj‖2 ⇐⇒ 〈θi,j ,W 〉 ≥ 0 .

L(µ) ≤
k∑

i=1

PX

[
〈θi ,W 〉

∏
j 6=i

1 (〈θi,j ,W 〉 ≥ 0)
]

+PX

[
‖X‖2

]
.

Same bound as before for L(µ)−PX

[
‖X‖2

]
.
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Application to images: a small example
How to create patches with a random support ?

Let (Xi , i ∈ I) ∈ RI be a random image, where |I| <∞ is the
number of pixels.
Represent the pixel location i by a random variable S, putting

PS,V |X =
1
|I|
∑
i∈I

δi ⊗ δXi , where (S,V ) ∈ I ×R.

Add noise, introducing V ′ = V + ξ such that E
(
V ′|X ,S

)
= V .

Put U = (S,V ′) and change the representation of X to PU|X .
Use an auxiliary set of images represented by the distribution
Qθ,U ∈M1

+

[
Θ×

(
I ×R

)]
, where

∣∣supp
(
Qθ,U

)∣∣ <∞. Take for
instance the empirical distribution of n independent copies of X , or

more precisely Qθ,U =
1
n

n∑
j=1

δj ⊗ PS,V |X=Xj , where

(Xj , 1 ≤ j ≤ n) ∼ P⊗n
X .

Solve inf
`θ :supp

(
QU|θ

)
→{1,...,k}

inf
QX|θ,`θ (U)

Qθ,U

[
K
(
QX |θ,`θ(U),PX |U

)]
.
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Application to images: a small example
Define the patch process as PT |X = Qθ,`θ(U)|X .
In the exact case where PX |U = QX |θ,`θ(U),

dPU|X ,U∈supp(QU )

dPU|U∈supp(QU )
(u) = Z−1

X Qθ|U=u

[
dQθ,`θ(U)|X

dQθ,`(U)

(
θ, `θ(u)

)]
.

Cluster the patches solving

inf
`:supp(RT )→{1,...,k}

inf
RX|`(T )

RT
[
K
(
RX |`(T ),PX |T

)]
Define a new representation as PW |X = R`(T )|X .
In the exact case where RX |`(T ) = PX |T and supp(RT ) = supp(PT ),

dPT |X

dPT
(t) = Z−1

X
dR`(T )|X

dR`(T )

(
`(t)

)
,

showing that the previous representation PT |X can be recovered
exactly from the next one PW |X = R`(T )|X and the marginal
distributions PT and R`(T ).
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Application to images: a small example
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Application to images: a small example

Figure : Extracted patches : 500× 500 from two images 1000× 1500. .

the training sample corresponds to the extracted patches.
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Application on images: small example

Figure : Selected image.
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Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.

Gautier Appert Information k-means and application to digital images



Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.
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Application on images: small example

Figure : Clustering with information k-means.
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